23 research outputs found

    Entangled magnetic, charge, and superconducting pairing correlations in the two-dimensional Hubbard model: a functional renormalization-group analysis

    Full text link
    Using the recently introduced multiloop extension of the functional renormalization group, we compute the magnetic, density, and superconducting susceptibilities of the two-dimensional Hubbard model at weak coupling and present a detailed analysis of their evolution with temperature, interaction strength, and loop order. By breaking down the susceptibilities into contributions from the bare susceptibility and the individual channels, we investigate their relative importance as well as the channel interplay. In particular, we trace the influence of antiferromagnetic fluctuations on the dd-wave superconductivity and provide an analytical understanding for the observed behavior.Comment: 31 pages, 19 figure

    The Potential Use of Electrochemotherapy in the Treatment of Uveal Melanoma: In Vitro Results in 3D Tumor Cultures and In Vivo Results in a Chick Embryo Model

    Get PDF
    Uveal melanoma (UM) is the most common primary intraocular tumor that arises from neoplastic melanocytes in the choroid, iris, and ciliary body. Electrochemotherapy (ECT) has been successfully established for the treatment of skin and soft tissue metastatic lesions, deep-seated tumors of the liver, bone metastases, and unresectable pancreas lesions. The aim of this study was to evaluate the effect of ECT in vitro in 3D spheroid culture systems in primary and metastatic UM cell lines. We also investigated the chick embryo chorioallantoic membrane (CAM) as an in vivo model system for the growth and treatment of UM tumors using ECT. The cytotoxic effect of ECT in 3D spheroids was analyzed seven days following treatment by assessment of the size and MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction] assay. The cytotoxicity of ECT after intratumoral or intraarterial administration was evaluated histologically. In vitro and in vivo ECT caused a significant reduction in tumor size and viability compared to electroporation or chemotherapy in both sections of our study. The current results underline the effectiveness of ECT in the treatment of UM and prepare the way for further investigation of its potential application in UM

    Mott transition and pseudogap of the square-lattice Hubbard model: results from center-focused cellular dynamical mean-field theory

    Full text link
    The recently proposed center-focused post-processing procedure [Phys. Rev. Research 2, 033476 (2020)] of cellular dynamical mean-field theory suggests that central sites of large impurity clusters are closer to the exact solution of the Hubbard model than the edge sites. In this paper, we systematically investigate results in the spirit of this center-focused scheme for several cluster sizes up to 8Ă—88\times 8 in and out of particle-hole symmetry. First we analyze the metal-insulator crossovers and transitions of the half-filled Hubbard model on a simple square lattice. We find that the critical interaction of the crossover is reduced with increasing cluster sizes and the critical temperature abruptly drops for the 4Ă—44\times 4 cluster. Second, for this cluster size, we apply the center-focused scheme to a system with more realistic tight-binding parameters, investigating its pseudogap regime as a function of temperature and doping, where we find doping dependent metal-insulator crossovers, Lifshitz transitions and a strongly renormalized Fermi-liquid regime. Additionally to diagnosing the real space origin of the suppressed antinodal spectral weight in the pseudogap regime, we can infer hints towards underlying charge ordering tendencies.Comment: 29 pages, 15 figure

    Single-boson exchange functional renormalization group application to the two-dimensional Hubbard model at weak coupling

    Full text link
    We illustrate the algorithmic advantages of the recently introduced single-boson exchange (SBE) formulation for the one-loop functional renormalization group (fRG), by applying it to the two-dimensional Hubbard model on a square lattice. We present a detailed analysis of the fermion-boson Yukawa couplings and of the corresponding physical susceptibilities by studying their evolution with temperature and interaction strength, both at half filling and finite doping. The comparison with the conventional fermionic fRG decomposition shows that the rest functions of the SBE algorithm, which describe correlation effects beyond the SBE processes, play a negligible role in the weak-coupling regime above the pseudo-critical temperature, in contrast to the rest functions of the conventional fRG. Remarkably, they remain finite also at the pseudo-critical transition, whereas the corresponding rest functions of the conventional fRG implementation diverge. As a result, the SBE formulation of the fRG flow allows for a substantial reduction of the numerical effort in the treatment of the two-particle vertex function, paving a promising route for future multiboson and multiloop extensions

    Mott transition and pseudogap of the square-lattice Hubbard model: Results from center-focused cellular dynamical mean-field theory

    No full text
    The recently proposed center-focused post-processing procedure [Phys. Rev. Res. 2, 033476 (2020)] of cellular dynamical mean-field theory suggests that central sites of large impurity clusters are closer to the exact solution of the Hubbard model than the edge sites. In this paper, we systematically investigate results in the spirit of this center-focused scheme for several cluster sizes up to 8Ă—8 in and out of particle-hole symmetry. First we analyze the metal-insulator crossovers and transitions of the half-filled Hubbard model on a simple square lattice. We find that the critical interaction of the crossover is reduced with increasing cluster sizes and the critical temperature abruptly drops for the 4Ă—4 cluster. Second, for this cluster size, we apply the center-focused scheme to a system with more realistic tight-binding parameters, investigating its pseudogap regime as a function of temperature and doping, where we find doping dependent metal-insulator crossovers, Lifshitz transitions and a strongly renormalized Fermi-liquid regime. Additionally to diagnosing the real space origin of the suppressed antinodal spectral weight in the pseudogap regime, we can infer hints towards underlying charge ordering tendencies
    corecore