31 research outputs found

    Readme WASCAL WRF climate simulations

    Get PDF

    Black hole accretion disks : sources of viscosity and signatures of super-Eddington accretion

    Get PDF
    We study the role of convection in black hole accretion flows. We investigate the influence of convection on the energy transport as well as the effect of convective turbulence on the disk’s viscosity. The results reveal that convection supports the radiative energy transport efficiently in massless disks, while it can turn into a negative feedback if self-gravity becomes important. Convective turbulence adds significantly to the total viscosity, but cannot account for it on its own. In the second part, we study the spectral energy distribution of super-Eddington accretion flows onto a black hole, based on 2D RHD simulation data. We model the continuum emission as well as the iron K line emission and absorption features with a ray-tracing radiative transfer code. We find that mild relativistic beaming effects become important, leading to super-Eddington luminosities for face-on seen disks. We confirm the diagnostic power of the iron K lines on the accretion process in the inner disk region, finding a strong correlation between the central black hole mass and the ratio of the Kβ to the Kα lines. We also detect a trend of line broadening for edge-on seen disks

    Black hole accretion: theoretical limits and observational implications

    Get PDF
    Recently, the issue of the role of the Eddington limit in accretion discs became a matter of debate. While the classical (spherical) Eddington limit is certainly an over-simplification, it is not really clear how to treat it in a flattened structure like an accretion disc. We calculate the critical accretion rates and resulting disc luminosities for various disc models corresponding to the classical Eddington limit by equating the attractive and repulsive forces locally. We also discuss the observational appearance of such highly accreting systems by analyzing their spectral energy distributions. Our calculations indicate that the allowed mass accretion rates differ considerably from what one expects by applying the Eddington limit in its classical form, while the luminosities only weakly exceed their classical equivalent. Depending on the orientation of the disc relative to the observer, mild relativistic beaming turns out to have an important influence on the disc spectra. Thus, possible super-Eddington accretion, combined with mild relativistic beaming, supports the idea that ultraluminous X-ray sources host stellar mass black holes and accounts partially for the observed high temperatures of these objects.Comment: to appear in "Black Holes: from Stars to Galaxies" Proceedings IAU Symp. No. 238, eds. V. Karas & G. Matt; 4 pages, 2 figures, needs iaus.cl

    Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment

    Get PDF
    The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers.We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes.We further demonstrate the model performance of MPAS in terms of ist capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3 km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3 km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities

    New Spectral State of Supercritical Accretion Flow with Comptonizing Outflow

    Full text link
    Supercritical accretion flows inevitably produce radiation-pressure driven outflows, which will Compton up-scatter soft photons from the underlying accretion flow, thereby making hard emission. We perform two dimensional radiation hydrodynamic simulations of supercritical accretion flows and outflows, incorporating such Compton scattering effects, and demonstrate that there appears a new hard spectral state at higher photon luminosities than that of the slim-disk state. In this state, as the photon luminosity increases, the photon index decreases and the fraction of the hard emission increases. The Compton yy-parameter is of the order of unity (and thus the photon index will be ∼2\sim 2) when the apparent photon luminosity is ∼30LE{\sim}30L_{\rm E} (with LEL_{\rm E} being the Eddington luminosity) for nearly face-on sources. This explains the observed spectral hardening of the ULX NGC1313 X-2 in its brightening phase and thus supports the model of supercritical accretion onto stellar mass black holes in this ULX.Comment: 15 pages, 4 figures, accepted for publication in PAS

    Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    Get PDF
    West Africa is a hot spot region for land–atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August–September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models

    The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, dissemination and assessment

    Get PDF
    Climate change and constant population growth pose severe challenges to 21st century rural Africa. Within the framework of the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), an ensemble of high-resolution regional climate change scenarios for the greater West African region is provided to support the development of effective adaptation and mitigation measures. This contribution presents the overall concept of the WASCAL regional climate simulations, as well as detailed information on the experimental design, and provides information on the format and dissemination of the available data. All data are made available to the public at the CERA long-term archive of the German Climate Computing Center (DKRZ) with a subset available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.880512). A brief assessment of the data are presented to provide guidance for future users. Regional climate projections are generated at high (12 km) and intermediate (60 km) resolution using the Weather Research and Forecasting Model (WRF). The simulations cover the validation period 1980–2010 and the two future periods 2020–2050 and 2070–2100. A brief comparison to observations and two climate change scenarios from the Coordinated Regional Downscaling Experiment (CORDEX) initiative is presented to provide guidance on the data set to future users and to assess their climate change signal. Under the RCP4.5 (Representative Concentration Pathway 4.5) scenario, the results suggest an increase in temperature by 1.5 °C at the coast of Guinea and by up to 3 °C in the northern Sahel by the end of the 21st century, in line with existing climate projections for the region. They also project an increase in precipitation by up to 300 mm per year along the coast of Guinea, by up to 150 mm per year in the Soudano region adjacent in the north and almost no change in precipitation in the Sahel. This stands in contrast to existing regional climate projections, which predict increasingly drier conditions. The high spatial and temporal resolution of the data, the extensive list of output variables, the large computational domain and the long time periods covered make this data set a unique resource for follow-up analyses and impact modelling studies over the greater West African region. The comprehensive documentation and standardisation of the data facilitate and encourage their use within and outside of the WASCAL community

    Numerical Simulation of Surface Energy and Water Balances over a Semiarid Grassland Ecosystem in the West African Savanna

    Get PDF
    To understand surface energy exchange processes over the semiarid regions in West Africa, numerical simulations of surface energy and water balances were carried out using a one-dimensional multilayer atmosphere-SOil-VEGetation (SOLVEG) model for selected days of the dry and rainy seasons over a savanna grassland ecosystem in Sumbrungu in the Upper East region of Ghana. The measured Bowen ratio was used to partition the residual energy into the observed sensible heat flux () and latent heat flux (LE) in order to investigate the impact of the surface energy closure on model performance. The results showed that the model overall reproduced the diurnal changes in the observed energy fluxes, especially the net radiation (Rn), compared to half-hourly eddy covariance flux measurements, for the study periods. The performance measure in terms of the correlation coefficient (), centred root mean square error (RMSE), and normalized standard deviation (σ) between the simulated and LE and their corresponding uncorrected observed values ranged between R = 0.63–0.99 and 0.83–0.94, RMSE = 0.88–1.25 and 0.88–1.92, and = 0.95–2.23 and 0.13–2.82 for the dry and rainy periods respectively, indicating a moderate to good model performance. The partitioning of and LE by SOLVEG was generally in agreement with the observations during the dry period but showed clear discrepancies during the rainy period, particularly after rainfall events. Further sensitivity tests over longer simulation periods (e.g., 1 year) are required to improve model performance and to investigate seasonal exchanges of surface energy fluxes over the West African Savanna ecosystems in more details

    Numerical Simulation of Surface Energy and Water Balances over a Semiarid Grassland Ecosystem in the West African Savanna

    Get PDF
    To understand surface energy exchange processes over the semiarid regions in West Africa, numerical simulations of surface energy and water balances were carried out using a one-dimensional multilayer atmosphere-SOil-VEGetation (SOLVEG) model for selected days of the dry and rainy seasons over a savanna grassland ecosystem in Sumbrungu in the Upper East region of Ghana. The measured Bowen ratio was used to partition the residual energy into the observed sensible heat flux (H) and latent heat flux (LE) in order to investigate the impact of the surface energy closure on model performance. The results showed that the model overall reproduced the diurnal changes in the observed energy fluxes, especially the net radiation (Rn), compared to half-hourly eddy covariance flux measurements, for the study periods. The performance measure in terms of the correlation coefficient (R), centred root mean square error (RMSE), and normalized standard deviation (σ) between the simulated H and LE and their corresponding uncorrected observed values ranged between R = 0.63–0.99 and 0.83–0.94, RMSE = 0.88–1.25 and 0.88–1.92, and σ = 0.95–2.23 and 0.13–2.82 for the dry and rainy periods respectively, indicating a moderate to good model performance. The partitioning of H and LE by SOLVEG was generally in agreement with the observations during the dry period but showed clear discrepancies during the rainy period, particularly after rainfall events. Further sensitivity tests over longer simulation periods (e.g., 1 year) are required to improve model performance and to investigate seasonal exchanges of surface energy fluxes over the West African Savanna ecosystems in more details
    corecore