3,633 research outputs found

    Drain Voltage Scaling in Carbon Nanotube Transistors

    Full text link
    While decreasing the oxide thickness in carbon nanotube field-effect transistors (CNFETs) improves the turn-on behavior, we demonstrate that this also requires scaling the range of the drain voltage. This scaling is needed to avoid an exponential increase in Off-current with drain voltage, due to modulation of the Schottky barriers at both the source and drain contact. We illustrate this with results for bottom-gated ambipolar CNFETs with oxides of 2 and 5 nm, and give an explicit scaling rule for the drain voltage. Above the drain voltage limit, the Off-current becomes large and has equal electron and hole contributions. This allows the recently reported light emission from appropriately biased CNFETs.Comment: 4 pages, 4 EPS figure, to appear in Appl. Phys. Lett. (issue of 15 Sept 2003

    Modelling the carbon cycle during the Paleocene-Eocene thermal maximum

    Get PDF

    Studies on the sulfation of cellulose α-lipoate and ability of the sulfated product to stabilize colloidal suspensions of gold nanoparticles

    Get PDF
    © 2015 Elsevier Ltd. A versatile method for the synthesis of cellulose α-lipoate with a low degree of substitution (DS) has been developed using N,N-dimethylacetamide (DMA)/LiCl as a solvent and N,N′-carbonyldiimidazole (CDI) as an esterification reagent. The cellulose α-lipoate with DS of α-lipoate groups of 0.26 was converted with sulfur trioxide-pyridine complex in dimethyl sulfoxide (DMSO) as solvent. The sulfation is accompanied by an unexpected partial oxidation of the disulfide moiety leading to the formation of the corresponding stereoisomers of S-oxides. The resulting mixture of water-soluble cellulose α- and β-lipoate sulfate possesses a DS of sulfuric acid half ester groups of 1.78. This cellulose-α/β-lipoate sulfate derivative can be used as an effective stabilizer and solubilizer for the formation of colloidal suspensions of gold nanoparticles formed in situ in aqueous solution

    Unexpected Scaling of the Performance of Carbon Nanotube Transistors

    Full text link
    We show that carbon nanotube transistors exhibit scaling that is qualitatively different than conventional transistors. The performance depends in an unexpected way on both the thickness and the dielectric constant of the gate oxide. Experimental measurements and theoretical calculations provide a consistent understanding of the scaling, which reflects the very different device physics of a Schottky barrier transistor with a quasi-one-dimensional channel contacting a sharp edge. A simple analytic model gives explicit scaling expressions for key device parameters such as subthreshold slope, turn-on voltage, and transconductance.Comment: 4 pages, 4 figure

    Ocean biogeochemistry in the warm climate of the late Paleocene

    No full text
    The late Paleocene is characterized by warm and stable climatic conditions that served as the background climate for the Paleocene–Eocene Thermal Maximum (PETM, ~55 million years ago). With respect to feedback processes in the carbon cycle, the ocean biogeochemical background state is of major importance for projecting the climatic response to a carbon perturbation related to the PETM. Therefore, we use the Hamburg Ocean Carbon Cycle model (HAMOCC), embedded in the ocean general circulation model of the Max Planck Institute for Meteorology, MPIOM, to constrain the ocean biogeochemistry of the late Paleocene. We focus on the evaluation of modeled spatial and vertical distributions of the ocean carbon cycle parameters in a long-term warm steady-state ocean, based on a 560 ppm CO2 atmosphere. Model results are discussed in the context of available proxy data and simulations of pre-industrial conditions. Our results illustrate that ocean biogeochemistry is shaped by the warm and sluggish ocean state of the late Paleocene. Primary production is slightly reduced in comparison to the present day; it is intensified along the Equator, especially in the Atlantic. This enhances remineralization of organic matter, resulting in strong oxygen minimum zones and CaCO3 dissolution in intermediate waters. We show that an equilibrium CO2 exchange without increasing total alkalinity concentrations above today's values is achieved. However, consistent with the higher atmospheric CO2, the surface ocean pH and the saturation state with respect to CaCO3 are lower than today. Our results indicate that, under such conditions, the surface ocean carbonate chemistry is expected to be more sensitive to a carbon perturbation (i.e., the PETM) due to lower CO32− concentration, whereas the deep ocean calcite sediments would be less vulnerable to dissolution due to the vertically stratified ocean
    corecore