19 research outputs found

    Military-Related Exposures, Social Determinants of Health, and Dysbiosis: The United States-Veteran Microbiome Project (US-VMP)

    Get PDF
    Significant effort has been put forth to increase understanding regarding the role of the human microbiome in health- and disease-related processes. In turn, the United States (US) Veteran Microbiome Project (US-VMP) was conceptualized as a means by which to serially collect microbiome and health-related data from those seeking care within the Veterans Health Administration (VHA). In this manuscript, exposures related to military experiences, as well as conditions and health-related factors among patients seen in VHA clinical settings are discussed in relation to common psychological and physical outcomes. Upon enrollment in the study, Veterans complete psychometrically sound (i.e., reliable and valid) measures regarding their past and current medical history. Participants also provide skin, oral, and gut microbiome samples, and permission to track their health status via the VHA electronic medical record. To date, data collection efforts have been cross-diagnostic. Within this manuscript, we describe current data collection practices and procedures, as well as highlight demographic, military, and psychiatric characteristics of the first 188 Veterans enrolled in the study. Based on these findings, we assert that this cohort is unique as compared to those enrolled in recent large-scale studies of the microbiome. To increase understanding regarding disease and health among diverse cohorts, efforts such as the US-VMP are vital. Ongoing barriers and facilitators to data collection are discussed, as well as future research directions, with an emphasis on the importance of shifting current thinking regarding the microbiome from a focus on normalcy and dysbiosis to health promotion and disease prevention

    Military-Related Exposures, Social Determinants of Health, and Dysbiosis: The United States-Veteran Microbiome Project (US-VMP)

    Get PDF
    Significant effort has been put forth to increase understanding regarding the role of the human microbiome in health- and disease-related processes. In turn, the United States (US) Veteran Microbiome Project (US-VMP) was conceptualized as a means by which to serially collect microbiome and health-related data from those seeking care within the Veterans Health Administration (VHA). In this manuscript, exposures related to military experiences, as well as conditions and health-related factors among patients seen in VHA clinical settings are discussed in relation to common psychological and physical outcomes. Upon enrollment in the study, Veterans complete psychometrically sound (i.e., reliable and valid) measures regarding their past and current medical history. Participants also provide skin, oral, and gut microbiome samples, and permission to track their health status via the VHA electronic medical record. To date, data collection efforts have been cross-diagnostic. Within this manuscript, we describe current data collection practices and procedures, as well as highlight demographic, military, and psychiatric characteristics of the first 188 Veterans enrolled in the study. Based on these findings, we assert that this cohort is unique as compared to those enrolled in recent large-scale studies of the microbiome. To increase understanding regarding disease and health among diverse cohorts, efforts such as the US-VMP are vital. Ongoing barriers and facilitators to data collection are discussed, as well as future research directions, with an emphasis on the importance of shifting current thinking regarding the microbiome from a focus on normalcy and dysbiosis to health promotion and disease prevention

    Military-Related Exposures, Social Determinants of Health, and Dysbiosis: The United States-Veteran Microbiome Project (US-VMP)

    Get PDF
    Significant effort has been put forth to increase understanding regarding the role of the human microbiome in health- and disease-related processes. In turn, the United States (US) Veteran Microbiome Project (US-VMP) was conceptualized as a means by which to serially collect microbiome and health-related data from those seeking care within the Veterans Health Administration (VHA). In this manuscript, exposures related to military experiences, as well as conditions and health-related factors among patients seen in VHA clinical settings are discussed in relation to common psychological and physical outcomes. Upon enrollment in the study, Veterans complete psychometrically sound (i.e., reliable and valid) measures regarding their past and current medical history. Participants also provide skin, oral, and gut microbiome samples, and permission to track their health status via the VHA electronic medical record. To date, data collection efforts have been cross-diagnostic. Within this manuscript, we describe current data collection practices and procedures, as well as highlight demographic, military, and psychiatric characteristics of the first 188 Veterans enrolled in the study. Based on these findings, we assert that this cohort is unique as compared to those enrolled in recent large-scale studies of the microbiome. To increase understanding regarding disease and health among diverse cohorts, efforts such as the US-VMP are vital. Ongoing barriers and facilitators to data collection are discussed, as well as future research directions, with an emphasis on the importance of shifting current thinking regarding the microbiome from a focus on normalcy and dysbiosis to health promotion and disease prevention

    Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior.

    Get PDF
    Exposing a male rat to an obesogenic high-fat diet (HFD) influences attractiveness to potential female mates, the subsequent interaction of female mates with infant offspring, and the development of stress-related behavioral and neural responses in offspring. To examine the stomach and fecal microbiome\u27s potential roles, fecal samples from 44 offspring and stomach samples from offspring and their fathers were collected and bacterial community composition was studied by 16 small subunit ribosomal RNA (16S rRNA) gene sequencing. Paternal diet (control, high-fat), maternal housing conditions (standard or semi-naturalistic housing), and maternal care (quality of nursing and other maternal behaviors) affected the within-subjects alpha-diversity of the offspring stomach and fecal microbiomes. We provide evidence from beta-diversity analyses that paternal diet and maternal behavior induced community-wide shifts to the adult offspring gut microbiome. Additionally, we show that paternal HFD significantly altered the adult offspring Firmicutes to Bacteroidetes ratio, an indicator of obesogenic potential in the gut microbiome. Additional machine-learning analyses indicated that microbial species driving these differences converged on Bifidobacterium pseudolongum. These results suggest that differences in early-life care induced by paternal diet and maternal care significantly influence the microbiota composition of offspring through the microbiota-gut-brain axis, having implications for adult stress reactivity

    Military-Related Exposures, Social Determinants of Health, and Dysbiosis: The United States-Veteran Microbiome Project (US-VMP)

    Get PDF
    Significant effort has been put forth to increase understanding regarding the role of the human microbiome in health- and disease-related processes. In turn, the United States (US) Veteran Microbiome Project (US-VMP) was conceptualized as a means by which to serially collect microbiome and health-related data from those seeking care within the Veterans Health Administration (VHA). In this manuscript, exposures related to military experiences, as well as conditions and health-related factors among patients seen in VHA clinical settings are discussed in relation to common psychological and physical outcomes. Upon enrollment in the study, Veterans complete psychometrically sound (i.e., reliable and valid) measures regarding their past and current medical history. Participants also provide skin, oral, and gut microbiome samples, and permission to track their health status via the VHA electronic medical record. To date, data collection efforts have been cross-diagnostic. Within this manuscript, we describe current data collection practices and procedures, as well as highlight demographic, military, and psychiatric characteristics of the first 188 Veterans enrolled in the study. Based on these findings, we assert that this cohort is unique as compared to those enrolled in recent large-scale studies of the microbiome. To increase understanding regarding disease and health among diverse cohorts, efforts such as the US-VMP are vital. Ongoing barriers and facilitators to data collection are discussed, as well as future research directions, with an emphasis on the importance of shifting current thinking regarding the microbiome from a focus on normalcy and dysbiosis to health promotion and disease prevention

    Military-Related Exposures, Social Determinants of Health, and Dysbiosis: The United States-Veteran Microbiome Project (US-VMP)

    Get PDF
    Significant effort has been put forth to increase understanding regarding the role of the human microbiome in health- and disease-related processes. In turn, the United States (US) Veteran Microbiome Project (US-VMP) was conceptualized as a means by which to serially collect microbiome and health-related data from those seeking care within the Veterans Health Administration (VHA). In this manuscript, exposures related to military experiences, as well as conditions and health-related factors among patients seen in VHA clinical settings are discussed in relation to common psychological and physical outcomes. Upon enrollment in the study, Veterans complete psychometrically sound (i.e., reliable and valid) measures regarding their past and current medical history. Participants also provide skin, oral, and gut microbiome samples, and permission to track their health status via the VHA electronic medical record. To date, data collection efforts have been cross-diagnostic. Within this manuscript, we describe current data collection practices and procedures, as well as highlight demographic, military, and psychiatric characteristics of the first 188 Veterans enrolled in the study. Based on these findings, we assert that this cohort is unique as compared to those enrolled in recent large-scale studies of the microbiome. To increase understanding regarding disease and health among diverse cohorts, efforts such as the US-VMP are vital. Ongoing barriers and facilitators to data collection are discussed, as well as future research directions, with an emphasis on the importance of shifting current thinking regarding the microbiome from a focus on normalcy and dysbiosis to health promotion and disease prevention

    Two models of inescapable stress increase tph2 mRNA expression in the anxiety-related dorsomedial part of the dorsal raphe nucleus

    No full text
    Expression of TPH2, the rate-limiting enzyme for brain serotonin synthesis, is elevated in the dorsal raphe nucleus (DR) of depressed suicide victims. One hypothesis is that this increase in TPH2 expression is stress-induced. Here, we used an established animal model to address whether exposure to an acute stressor, inescapable tail shock (IS), increases tph2 mRNA and Tph2 protein expression, and if IS sensitizes the DR to a subsequent, heterotypic stressor. In Experiment 1, we measured tph2 mRNA expression 4 h after IS or home cage (HC) control conditions in male rats, using in situ hybridization histochemistry. In Experiment 2, we measured Tph2 protein expression 12 h or 24 h after IS using western blot. In Experiment 3, we measured tph2 mRNA expression following IS on Day 1, and cold swim stress (10 min, 15 °C) on Day 2. Inescapable tail shock was sufficient to increase tph2 mRNA expression 4 h and 28 h later, selectively in the dorsomedial DR (caudal aspect of the dorsal DR, cDRD; an area just rostral to the caudal DR, DRC) and increased Tph2 protein expression in the DRD (rostral and caudal aspects of the dorsal DR combined) 24 h later. Cold swim increased tph2 mRNA expression in the dorsomedial DR (cDRD) 4 h later. These effects were associated with increased immobility during cold swim, elevated plasma corticosterone, and a proinflammatory plasma cytokine milieu (increased interleukin (IL)-6, decreased IL-10). Our data demonstrate that two models of inescapable stress, IS and cold swim, increase tph2 mRNA expression selectively in the anxiety-related dorsomedial DR (cDRD). Keywords: Anxiety, Dorsal raphe nucleus, Inescapable stress, Inflammation, Tryptophan hydroxylas

    Association of the Salivary Microbiome With Animal Contact During Early Life and Stress-Induced Immune Activation in Healthy Participants

    No full text
    The prevalence of stress-associated somatic and psychiatric disorders is increased in environments offering a narrow relative to a wide range of microbial exposure. Moreover, different animal and human studies suggest that an overreactive immune system not only accompanies stress-associated disorders, but might even be causally involved in their pathogenesis. In support of this hypothesis, we recently showed that urban upbringing in the absence of daily contact with pets, compared to rural upbringing in the presence of daily contact with farm animals, is associated with a more pronounced immune activation following acute psychosocial stressor exposure induced by the Trier Social Stress Test (TSST). Here we employed 16S rRNA gene sequencing to test whether this difference in TSST-induced immune activation between urban upbringing in the absence of daily contact with pets (n = 20) compared with rural upbringing in the presence of daily contact with farm animals (n = 20) is associated with differences in the composition of the salivary microbiome. Although we did not detect any differences in alpha or beta diversity measures of the salivary microbiome between the two experimental groups, statistical analysis revealed that the salivary microbial beta diversity was significantly higher in participants with absolutely no animal contact (n = 5, urban participants) until the age of 15 compared to all other participants (n = 35) reporting either daily contact with farm animals (n = 20, rural participants) or occasional pet contact (n = 15, urban participants). Interestingly, when comparing these urban participants with absolutely no pet contact to the remaining urban participants with occasional pet contact, the former also displayed a significantly higher immune, but not hypothalamic-pituitary-adrenal (HPA) axis or sympathetic nervous system (SNS) activation, following TSST exposure. In summary, we conclude that only urban upbringing with absolutely no animal contact had long-lasting effects on the composition of the salivary microbiome and potentiates the negative consequences of urban upbringing on stress-induced immune activation
    corecore