23 research outputs found

    Ultrafine-Grained Metals

    Get PDF
    Ultrafine-grained metallic materials produced by severe plastic deformation methods are at the cutting edge of modern materials science. UFG-metals exhibit outstanding properties which make them very interesting for structural or functional engineering applications. Fifteen articles in this special issue address a broad variety of topics: New developments in severe plastic deformation techniques, advances in modeling and simulation of the severe plastic deformation processes, mechanical properties under monotonic and cyclic loading of homogenous and graded UFG structures, dominating deformation mechanisms in UFG materials, advances and strategies for high conductivity UFG-materials, correlation between severe plastic deformation parameters and resulting materials properties and peculiarities in the corrosion behavior of UFG materials. The book covers latest results on ultrafine-grained titanium, aluminum and copper alloys and on UFG iron and steels and thus provides a deep insight to current research activities in the field of ultrafine-grained metals

    Ultrafine-Grained Metals

    No full text
    Ultrafine-grained (UFG) metallic materials are at the cutting edge of modern materials science as they exhibit outstanding properties which make them very interesting for prospective structural or functional engineering applications. [...

    Particle Based Alloying by Accumulative Roll Bonding in the System Al-Cu

    No full text
    The formation of alloys by particle reinforcement during accumulative roll bonding (ARB), and subsequent annealing, is introduced on the basis of the binary alloy system Al-Cu, where strength and electrical conductivity are examined in different microstructural states. An ultimate tensile strength (UTS) of 430 MPa for Al with 1.4 vol.% Cu was reached after three ARB cycles, which almost equals UTS of the commercially available Al-Cu alloy AA2017A with a similar copper content. Regarding electrical conductivity, the UFG structure had no significant influence. Alloying of aluminum with copper leads to a linear decrease in conductivity of 0.78 ”Ω∙cm/at.% following the Nordheim rule. On the copper-rich side, alloying with aluminum leads to a slight strengthening, but drastically reduces conductivity. A linear decrease of electrical conductivity of 1.19 ”Ω∙cm/at.% was obtained

    Influence of backpressure during ECAP on the monotonic and cyclic deformation behavior of AA5754 and Cu99.5

    Full text link
    Ultrafine-grained (UFG) metals produced by equal channel angular pressing (ECAP) exhibit outstanding mechanical properties. They show high strength under monotonic loading as well as strongly enhanced fatigue lives in the Wöhler S-N-plot compared to their coarse grained (CG) counterparts. It could be shown that the fatigue lives can be significantly enhanced further by applying backpressure during ECAP. Besides the positive effect of backpressure on the processability of hard to deform materials via ECAP, the hydrostatic stress induced by backpressure also influences the mechanical properties under monotonic and cyclic loading. Therefore the influence of backpressure on ECAPed Cu99.5 and on the ECAPed aluminum alloy AA5754 was investigated. It is shown that backpressure has no effect on the hardness and grain size in Cu99.5 but changes the grain boundary misorientation to higher fractions of low angle grain boundaries. Also the temperature dependency of the yield strength as well as the hardening behavior under monotonic compression is affected. The cyclic deformation behavior of Cu99.5 is not strongly influenced by backpressure, but the mean stress level changes drastically. The fatigue life increases with the application of backpressure at low plastic amplitudes due to a change in the crack initiation and propagation. Aim of this work is the investigation of the influence of backpressure during equal channel angular pressing (ECAP) on the mechanical properties under monotonic and cyclic loading. Therefore we performed hardness measurements, compression, and fatigue tests on ECAPed Cu99.5 and AA5754. The results are discussed in terms of microstructure and relevant deformation and damage mechanisms

    Influence of Zn and Sn on the Precipitation Behavior of New Al–Mg–Si Alloys

    No full text
    In this study, we demonstrate how Zn and Sn influence hardening behavior and cluster formation during pre-aging and paint bake treatment in Al–Mg–Si alloys via hardness tests, tensile tests, and atom probe tomography. Compared to the standard alloy, the Sn-modified variant shows reduced cluster size and yield strength in the pre-aged condition. During the paint bake cycle, the clusters start to grow very fast and the alloy exhibits the highest strength increment. This behavior is attributed to the high vacancy binding energy of Sn. Adding Zn increases the formation kinetics and the size of Mg–Si co-clusters, generating higher yield strength values for both the pre-aged and paint baked conditions. Simultaneous addition of Zn and Sn creates a synergistic effect and produces an alloy that exhibits moderate strength (and good formability) in the pre-aged condition and accelerated hardening behavior during the paint bake cycle.ISSN:1996-194

    Microstructure and Mechanical Properties of Accumulative Roll-Bonded AA1050A/AA5005 Laminated Metal Composites

    No full text
    Laminated metal composites (LMCs) with alternating layers of commercial pure aluminum AA1050A and aluminum alloy AA5005 were produced by accumulative roll-bonding (ARB). In order to vary the layer thickness and the number of layer interfaces, different numbers of ARB cycles (4, 8, 10, 12, 14 and 16) were performed. The microstructure and mechanical properties were characterized in detail. Up to 8 ARB cycles, the ultrafine-grained (UFG) microstructure of the layers in the LMC evolves almost equally to those in AA1050A and AA5005 mono-material sheets. However, the grain size in the composites tends to have smaller values. Nevertheless, the local mechanical properties of the individual layers in the LMCs are very similar to those of the mono-material sheets, and the macroscopic static mechanical properties of the LMCs can be calculated as the mean value of the mono-material sheets applying a linear rule of mixture. In contrast, for more than 12 ARB cycles, a homogenous microstructure was obtained where the individual layers within the composite cannot be visually separated any longer; thus, the hardness is at one constant and a high level across the whole sheet thickness. This results also in a significant higher strength in tensile testing. It was revealed that, with decreasing layer thickness, the layer interfaces become more and more dominating

    Ultrafine-Grained Austenitic Stainless Steels X4CrNi18-12 and X8CrMnNi19-6-3 Produced by Accumulative Roll Bonding

    No full text
    Austenitic stainless steels X4CrNi18-12 and X8CrMnNi19-6-3 were processed by accumulative roll bonding (ARB). Both materials show an extremely high yield strength of 1.25 GPa accompanied by a satisfactory elongation to failure of up to 14% and a positive strain rate sensitivity after two ARB cycles. The strain-hardening rate of the austenitic steels reveals a stabilization of the stress-strain behavior during tensile testing. Especially for X8CrMnNi19-6-3, which has an elevated manganese content of 6.7 wt.%, necking is prevented up to comparatively high plastic strains. Microstructural investigations showed that the microstructure is separated into ultrafine-grained channel like areas and relatively larger grains where pronounced nano-twinning and martensite formation is observed

    Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al

    No full text
    A nanoindentation strain-rate jump technique has been developed for determining the local strain-rate sensitivity (SRS) of nanocrystalline and ultrafine-grained (UFG) materials. The results of the new method are compared to conventional constant strain-rate nanoindentation experiments, macroscopic compression tests, and finite element modeling (FEM) simulations. The FEM simulations showed that nanoindentation tests should yield a similar SRS as uniaxial testing and generally a good agreement is found between nanoindentation strain-rate jump experiments and compression tests. However, a higher SRS is found in constant indentation strain-rate tests, which could be caused by the long indentation times required for tests at low indentation strain rates. The nanoindentation strain-rate jump technique thus offers the possibility to use single indentations for determining the SRS at low strain rates with strongly reduced testing times. For UFG-Al, extremely fine-grained regions around a bond layer exhibit a substantial higher SRS than bulk material
    corecore