18 research outputs found

    Stage-Specific Sampling by Pattern Recognition Receptors during Candida albicans Phagocytosis

    Get PDF
    Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-α and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion

    Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn’s disease

    Get PDF
    GD and AWW receive core funding support from the Scottish Government’s Rural and Environmental Science and Analytical Services (RESAS) Division. JW was funded by the Wellcome Trust [Grant No. 098051]. JVL is funded by MRC New Investigator Grant (MR/P002536/1) and ERC Starting Grant (715662). JK is funded by NIHR: II-OL-1116-10027, NIH: R01-CA204403-01A1, Horizon H2020: ITN GROWTH. Imperial Biomedical Research Centre, SAGES research grant. Infrastructure support for this research was provided by the NIHR Imperial biomedical Research Centre (BRC). Microbiota analyses were carried out using the Maxwell computer cluster at the University of Aberdeen. We thank the Illumina MiSeq team at the Wellcome Sanger Institute for their assistance. This work was partially described in the Ph.D. thesis of KD (Retrieved 2020, Pediatric inflammatory bowel disease Monitoring, nutrition and surgery, https://pure.uva.nl/ws/files/23176012/Thesis_complete_.pdf).Peer reviewedPublisher PD

    Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicited in vivo

    No full text
    Dectin-2 is a recently described dendritic-cell-associated receptor, suggested to be involved in the initiation and maintenance of UV-induced tolerance. To understand the physiological relevance of the proposed functions of this C-type lectin-like receptor, we have generated monoclonal antibodies against its extracellular domain and performed a detailed study of its expression. In naive mice, Dectin-2 has a novel distribution pattern compared with other myeloid markers, but is predominantly expressed by a wide variety of tissue macrophages. Its expression was limited on dendritic cells and notably absent from brain microglia and choroid plexus or meningeal macrophages. On peripheral blood monocytes, Dectin-2 expression was very low on the surface but was transiently and markedly up-regulated on induction of inflammation in vivo using a variety of stimuli. This change in Dectin-2 expression occurs on 'inflammatory' monocytes after arrival at the inflammatory lesion as demonstrated by adoptive cell-transfer studies, and is independent of whether the macrophages elicited by the stimuli ultimately expressed Dectin-2. These observations show Dectin-2 expression to be characteristic of monocyte activation/maturation at an inflammatory lesion and provide a new perspective on the interpretation of Dectin-2 function in viv

    Loss of cell wall mannosylphosphate in Candida albicans does not influence macrophage recognition

    No full text
    The outer layer of the cell wall of the human pathogenic fungus Candida albicans is enriched with heavily mannosylated glycoproteins that are the immediate point of contact between the fungus and cells of the host, including phagocytes. Previous work had identified components of the acid-labile fraction of N-linked mannan, comprising beta-1,2-linked mannose residues attached via a phosphodiester bond, as potential ligands for macrophage receptors and modulators of macrophage function. We therefore isolated and disrupted the CaMNN4 gene, which is required for mannosyl phosphate transfer and hence the attachment of beta-1,2 mannose oligosaccharides to the acid-labile N-mannan side chains. With the mannosylphosphate eliminated, the mnn4Delta null mutant was unable to bind the charged cationic dye Alcian Blue and was devoid of acid-labile beta-1,2-linked oligomannosaccharides. The mnn4Delta mutant was unaffected in cell growth and morphogenesis in vitro and in virulence in a murine model of systemic C. albicans infection. The null mutant was also not affected in its interaction with macrophages. Mannosylphosphate is therefore not required for macrophage interactions or for virulence of C. albican

    Dietary curdlan enhances bifidobacteria and reduces intestinal inflammation in mice

    No full text
    β-glucan consumption is known for its beneficial health effects, but the mode of action is unclear. While humans and mice lack the required enzymes to digest β-glucans, certain intestinal microbes can digest β-glucans, triggering gut microbial changes. Curdlan, a particulate β-glucan isolated from Alcaligenes faecalis, is used as a food additive. In this study we determined the effect of curdlan intake in mice on the intestinal microbiota and dextran sodium sulfate (DSS)-induced intestinal inflammation. The effect of curdlan on the human intestinal microbiota was assessed using i-screen, an assay for studying anaerobic microbial interactions. Mice received oral gavage with vehicle or curdlan for 14 days followed by DSS for 7 days. The curdlan-fed group showed reduced weight loss and colonic inflammation compared to the vehicle-fed group. Curdlan intake did not induce general microbiota community changes, although a specific Bifidobacterium, closely related to Bifidobacterium choerinum, was observed to be 10-to 100-fold more prevalent in the curdlan-fed group under control and colitis conditions, respectively. When tested in i-screen, curdlan induced a global change in the microbial composition of the healthy intestinal microbiota from a human. Overall, these results suggest that dietary curdlan induces microbiota changes that could reduce intestinal inflammation

    Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function

    No full text
    At present, approximately 150 different members of the adhesion-G protein-coupled receptor (GPCR) family have been identified in metazoans. Surprisingly, very little is known about their function, although they all possess large extracellular domains coupled to a seven-transmembrane domain, suggesting a potential role in cell adhesion and signaling. Here, we demonstrate how the human-restricted adhesion-GPCR, EMR2 (epidermal growth factor-like module-containing mucin-like hormone receptor), regulates neutrophil responses by potentiating the effects of a number of proinflammatory mediators and show that the transmembrane region is critical for adhesion-GPCR function. Using an anti-EMR2 antibody, ligation of EMR2 increases neutrophil adhesion and migration, and augments superoxide production and proteolytic enzyme degranulation. On neutrophil activation, EMR2 is rapidly translocated to membrane ruffles and the leading edge of the cell. Further supporting the role in neutrophil activation, EMR2 expression on circulating neutrophils is significantly increased in patients with systemic inflammation. These data illustrate a definitive function for a human adhesion-GPCR within the innate immune system and suggest an important role in potentiating the inflammatory response. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil functio

    MiR-511 deficiency protects mice from experimental colitis by reducing TLR3 and TLR4 responses via WD repeat and FYVE-domain-containing protein 1

    No full text
    Antimicrobial responses play an important role in maintaining intestinal heath. Recently we reported that miR-511 may regulate TLR4 responses leading to enhanced intestinal inflammation. However, the exact mechanism remained unclear. In this study we investigated the effect of miR-511 deficiency on anti-microbial responses and DSS-induced intestinal inflammation. miR-511-deficient mice were protected from DSS-induced colitis as shown by significantly lower disease activity index, weight loss and histology scores in the miR-511-deficient group. Furthermore, reduced inflammatory cytokine responses were observed in colons of miR-511 deficient mice. In vitro studies with bone marrow-derived M2 macrophages showed reduced TLR3 and TLR4 responses in miR-511-deficient macrophages compared to WT macrophages. Subsequent RNA sequencing revealed Wdfy1 as the potential miR-511 target. WDFY1 deficiency is related to impaired TLR3/TLR4 immune responses and the expression was downregulated in miR-511-deficient macrophages and colons. Together, this study shows that miR-511 is involved in the regulation of intestinal inflammation through downstream regulation of TLR3 and TLR4 responses via Wdfy1

    Intestinal Fungal Dysbiosis Is Associated With Visceral Hypersensitivity in Patients With Irritable Bowel Syndrome and Rats

    Get PDF
    BACKGROUND & AIMS: Visceral hypersensitivity is one feature of irritable bowel syndrome (IBS). Bacterial dysbiosis might be involved in the activation of nociceptive sensory pathways, but there have been few studies of the role of the mycobiome (the fungal microbiome) in the development of IBS. We analyzed intestinal mycobiomes of patients with IBS and a rat model of visceral hypersensitivity. METHODS: We used internal transcribed spacer 1-based metabarcoding to compare fecal mycobiomes of 18 healthy volunteers with those of 39 patients with IBS (with visceral hypersensitivity or normal levels of sensitivity). We also compared the mycobiomes of Long-Evans rats separated from their mothers (hypersensitive) with non-handled (normally sensitive) rats. We investigated whether fungi can cause visceral hypersensitivity using rats exposed to fungicide (fluconazole and nystatin). The functional relevance of the gut mycobiome was confirmed in fecal transplantation experiments: adult maternally separated rats were subjected to water avoidance stress (to induce visceral hypersensitivity), then given fungicide and donor cecum content via oral gavage. Other rats subjected to water avoidance stress were given soluble beta-glucans, which antagonize C-type lectin domain family 7 member A (CLEC7A or DECTIN1) signaling via spleen-associated tyrosine kinase (SYK), a SYK inhibitor to reduce visceral hypersensitivity, or vehicle (control). The sensitivity of mast cells to fungi was tested with mesenteric windows (ex vivo) and the human mast cell line HMC-1. RESULTS: a diversity (Shannon index) and mycobiome signature (stability selection) of both groups of IBS patients differed from healthy volunteers, and the mycobiome signature of hypersensitive patients differed from that of normally sensitive patients. We observed mycobiome dysbiosis in rats that had been separated from their mothers compared with nonhandled rats. Administration of fungicide to hypersensitive rats reduced their visceral hypersensitivity to normal levels of sensitivity. Administration of cecal mycobiomes from rats that had been separated from their mothers (but not non-handled mycobiome) restored hypersensitivity to distension. Administration of soluble b-glucans or a SYK inhibitor reduced visceral hypersensitivity, compared with controls. Particulate b-glucan (a DECTIN-1 agonist) induced mast cell degranulation in mesenteric windows and HMC-1 cells responded to fungal antigens by release of histamine. CONCLUSIONS: In an analysis of patients with IBS and controls, we associated fungal dysbiosis with IBS. In studies of rats, we found fungi to promote visceral hypersensitivity, which could be reduced by administration of fungicides, soluble beta-glucans, or a SYK inhibitor. The intestinal fungi might therefore be manipulated for treatment of IBS-related visceral hypersensitivit
    corecore