7,083 research outputs found

    Characterization of the pneumatic behavior of a novel spouted bed apparatus

    Get PDF
    Recently the importance of spouted bed technology has significantly increased in the context of drying processes as well as granulation, agglomeration or coating processes. Particulate systems concerning very fine or non spherical particles that are difficult to fluidize, often cannot be treated in conventional fluidized beds. In contrast to those fluidized beds, the spouted bed technology with its specific flow structure offers the opportunity of stable fluidization under controlled conditions. Within this work the fluid dynamics of a novel spouted bed with two adjustable gas inlets is investigated. By analysis of gas fluctuation spectra by means of a fast Fourier transformation algorithm, different operation regimes are identified and depicted graphically. Furthermore, continuum CFD-modeling of the granular solid phase motion by means of an Euler/Euler approach and comparisons with experimental obtained velocity vector fields by means of particle image velocimetry (PIV) measurements will be presented in this work

    Geometrical Considerations for the Design of Liquid-phase Biochemical Sensors Using a Cantilever\u27s Fundamental In-plane Mode

    Get PDF
    The influence of the beam geometry on the quality factor and resonance frequency of resonant silicon cantilever beams vibrating in their fundamental in-plane flexural mode in water has been investigated. Compared to cantilevers vibrating in their first out-of-plane flexural mode, utilizing the in-plane mode results in reduced damping and reduced mass loading by the surrounding fluid. Quality factors as high as 86 have been measured in water for cantilevers with a 20 ÎŒm thick silicon layer. Based on the experimental data, design guidelines are established for beam dimensions that ensure maximal Q-factors and minimal mass loading by the surrounding fluid, thus improving the limit-of-detection of mass-sensitive biochemical sensors. Elementary theory is also presented to help explain the observed trends. Additional discussion focuses on the tradeoffs that exist in designing liquid-phase biochemical sensors using in-plane cantilevers

    Unconventional Uses of Microcantilevers as Chemical Sensors in Gas and Liquid Media

    Get PDF
    The use of microcantilevers as (bio)chemical sensors usually involves the application of a chemically sensitive layer. The coated device operates either in a static bending regime or in a dynamic flexural mode. While some of these coated devices may be operated successfully in both the static and the dynamic modes, others may suffer from certain shortcomings depending on the type of coating, the medium of operation and the sensing application. Such shortcomings include lack of selectivity and reversibility of the sensitive coating and a reduced quality factor due to the surrounding medium. In particular, the performance of microcantilevers excited in their standard out-of-plane dynamic mode drastically decreases in viscous liquid media. Moreover, the responses of coated cantilevers operating in the static bending mode are often difficult to interpret. To resolve these performance issues, the following emerging unconventional uses of microcantilevers are reviewed in this paper: (1) dynamic-mode operation without using a sensitive coating, (2) the use of in-plane vibration modes (both flexural and longitudinal) in liquid media, and (3) incorporation of viscoelastic effects in the coatings in the static mode of operation. The advantages and drawbacks of these atypical uses of microcantilevers for chemical sensing in gas and liquid environments are discussed

    To Learn or Not to Learn Features for Deformable Registration?

    Full text link
    Feature-based registration has been popular with a variety of features ranging from voxel intensity to Self-Similarity Context (SSC). In this paper, we examine the question on how features learnt using various Deep Learning (DL) frameworks can be used for deformable registration and whether this feature learning is necessary or not. We investigate the use of features learned by different DL methods in the current state-of-the-art discrete registration framework and analyze its performance on 2 publicly available datasets. We draw insights into the type of DL framework useful for feature learning and the impact, if any, of the complexity of different DL models and brain parcellation methods on the performance of discrete registration. Our results indicate that the registration performance with DL features and SSC are comparable and stable across datasets whereas this does not hold for low level features.Comment: 9 pages, 4 figure

    Zapotec and Mixe use of Tropical Habitats for securing medicinal plants in MĂ©Xico

    Get PDF
    Medicinal plants are essential in the medical systems of the Mixe and Zapotec. In this study ethno-ecological strategies, employed by the two neighboring Indian groups in Mexico, for obtaining medicinal plants are analyzed. The indigenous classification of the environment is notably different from the Western one and distinguishes six dissimilar principal "zones” or land use types. Most ethnomedically important species are cultivated in the "house garden” or gathered in the community or its immediate surroundings. The house garden, for example, contributes 31.8% and 26.2% of all medical taxa for the Mixe and Zapotec, respectively. These ethnobotanical data on the indigenous uses indicate that anthropogenic types of vegetation yield the largest percentage of medicinal tax

    On the Relative Sensitivity of Mass-sensitive Chemical Microsensors

    Get PDF
    In this work, the chemical sensitivity of mass-sensitive chemical microsensors with a uniform layer sandwich structure vibrating in their lateral or in-plane flexural modes is investigated. It is experimentally verified that the relative chemical sensitivity of such resonant microsensors is -to a first order- independent of the microstructure\u27s in-plane dimensions and the flexural eigenmode used, and only depends on the layer thicknesses and densities as well as the sorption properties of the sensing film. Important implications for the design of mass-sensitive chemical microsensors are discussed, whereby the designer can focus on the layer stack to optimize the chemical sensitivity and on the in-plane dimensions and mode shape to optimize the resonator\u27s frequency stability
    • 

    corecore