15,055 research outputs found

    Optimal Summation and Integration by Deterministic, Randomized, and Quantum Algorithms

    Get PDF
    We survey old and new results about optimal algorithms for summation of finite sequences and for integration of functions from Hoelder or Sobolev spaces. First we discuss optimal deterministic and randomized algorithms. Then we add a new aspect, which has not been covered before on conferences about (quasi-) Monte Carlo methods: quantum computation. We give a short introduction into this setting and present recent results of the authors on optimal quantum algorithms for summation and integration. We discuss comparisons between the three settings. The most interesting case for Monte Carlo and quantum integration is that of moderate smoothness k and large dimension d which, in fact, occurs in a number of important applied problems. In that case the deterministic exponent is negligible, so the n^{-1/2} Monte Carlo and the n^{-1} quantum speedup essentially constitute the entire convergence rate. We observe that -- there is an exponential speed-up of quantum algorithms over deterministic (classical) algorithms, if k/d tends to zero; -- there is a (roughly) quadratic speed-up of quantum algorithms over randomized classical algorithms, if k/d is small.Comment: 13 pages, contribution to the 4th International Conference on Monte Carlo and Quasi-Monte Carlo Methods, Hong Kong 200

    Ionizing radiation exposure of LDEF

    Get PDF
    The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment

    Re-assigning (1x2) reconstruction of rutile TiO_2(110) from DFT+U calculations

    Full text link
    Physically reasonable electronic structures of reconstructed rutile TiO_2(110)-(1x2) surfaces were studied using density functional theory (DFT) supplemented with Hubbard U on-site Coulomb repulsion acting on the d electrons, so called as the DFT+U approach. Two leading reconstruction models proposed by Onishi--Iwasawa and Park et al. were compared in terms of their thermodynamic stabilities.Comment: 4 pages, 4 figures, 2 table

    Safety of herbal medicinal products: Echinacea and selected alkylamides do not induce CYP3A4 mRNA expression

    Get PDF
    Copyright © 2011 Maryam Modarai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.A major safety concern with the use of herbal medicinal products (HMP) is their interactions with conventional medicines, which are often mediated via the cytochrome P450 (CYP) system. Echinacea is a widely used over-the-counter HMP, with proven immunomodulatory properties. Its increasing use makes research into its safety an urgent concern. Previously, we showed that Echinacea extracts and its alkylamides (thought to be important for Echinacea's immunomodulatory activity) mildly inhibit the enzymatic activity of the main drug metabolising CYP isoforms, but to this date, there is insufficient work on its ability to alter CYP expression levels. We now report for the first time the effect of a commercial Echinacea extract (Echinaforce) and four Echinacea alkylamides on the transcription of the major drug metabolizing enzyme CYP3A4. HepG2 cells were exposed for 96 h to clinically relevant concentrations of Echinaforce (22, 11.6 and 1.16g mL-1) or the alkylamides (1.62 and 44 nM). CYP3A4 mRNA levels were quantified using real-time reverse transcription polymerase chain reaction (RT-PCR). Neither Echinaforce nor the alkylamides produced any significant changes in the steady-state CYP3A4 mRNA levels, under these conditions. In contrast, treatment with 50M rifampicin resulted in a 3.8-fold up-regulation over the vehicle control. We conclude that Echinaforce is unlikely to affect CYP3A4 transcriptional levels, even at concentrations which can inhibit the enzymatic activity of CYP3A4. Overall, our data provides further evidence for the lack of interactions between Echinacea and conventional drugs.Bioforce, Switzerland and the Maplethorpe Trust (University of London)

    NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers

    Full text link
    We present the first combination of NLO QCD matrix elements for di-Higgs production, retaining the full top quark mass dependence, with a parton shower. Results are provided within both the POWHEG-BOX and MadGraph5_aMC@NLO Monte Carlo frameworks. We assess in detail the theoretical uncertainties and provide differential results. We find that, as expected, the shower effects are relatively large for observables like the transverse momentum of the Higgs boson pair, which are sensitive to extra radiation. However, these shower effects are still much smaller than the differences between the Born-improved HEFT approximation and the full NLO calculation in the tails of the distributions.Comment: replaced by published version; in addition typos corrected in definition of pole coefficients below Eq.(2.4
    corecore