12,580 research outputs found
Higgs as an indication for flavor symmetry
Lepton flavor violating Higgs decays can arise in flavor symmetry models
where the Higgs sector is responsible for both the electroweak and the flavor
symmetry breaking. Here we advocate an three-Higgs-doublet model where
tightly constrained flavor changing neutral currents are suppressed by a
remnant symmetry. A small breaking of this symmetry can explain the
excess of Higgs decay final states with a topology
reported recently by CMS if the new neutral scalars are light. The model also
predicts sizable rates for lepton flavor violating Higgs decays in the
and channels because of the unifying flavor symmetry.Comment: 15+9 pages, 7 figures, updated for publication in PR
The Welfare Effects of Trade in Phytomedicines: A Multi-Disciplinary Analysis of Turmeric Production
International trade in medicinal herbal products is growing, while value chains are becoming more complex and governed by a range of public and private standards. There is a debate over the extent to which phytomedicine production can be beneficial for farmers in low and middle income countries. More generally, there are varied views about the extent to which small farmers are disadvantaged by stringent public health and private consumer standards in northern markets for agricultural products. This paper proves a comparative analysis of value chains, using case studies of turmeric production in India. It marries a qualitative investigation of turmeric producing sites in India with an investigation into the chemical quality of various turmeric products. The aim of the paper is to understand the way that varied structure and governance of value chains changes the benefits to both producer and consumer. When production is for the organic northern market, we found evidence of a ‘captive’ value chain, where the lead firm requires strict adherence to conditions of production and processing. Prices for farmers were relatively stable, at a reasonably high level. In contrast, where farmers were producing for local markets, including the major auction at Erode, prices were volatile and farmers bore considerable risk. We found that competition and volatility in the market-based chain can lead to turmeric adulteration and contamination, both intentional and unintentional. Our case study suggests that many small turmeric farmers would find it difficult to meet both public and private health standards, in contrast to some academic literature that argues that public health standards do not discriminate against small farmers. More than this, our study adds to the discussion of the impact of standards, suggesting clear consumer benefits in northern markets. However, there are also indications that only larger and more dynamic farmers can participate in the lucrative phytomedicine trade. As such, our study tentatively supports previous literature suggesting that the application of standards in northern markets lead to increasing farmer differentiation
Nonlocal feedback in ferromagnetic resonance
Ferromagnetic resonance in thin films is analyzed under the influence of
spatiotemporal feedback effects. The equation of motion for the magnetization
dynamics is nonlocal in both space and time and includes isotropic, anisotropic
and dipolar energy contributions as well as the conserved Gilbert- and the
non-conserved Bloch-damping. We derive an analytical expression for the
peak-to-peak linewidth. It consists of four separate parts originated by
Gilbert damping, Bloch-damping, a mixed Gilbert-Bloch component and a
contribution arising from retardation. In an intermediate frequency regime the
results are comparable with the commonly used Landau-Lifshitz-Gilbert theory
combined with two-magnon processes. Retardation effects together with Gilbert
damping lead to a linewidth the frequency dependence of which becomes strongly
nonlinear. The relevance and the applicability of our approach to ferromagnetic
resonance experiments is discussed.Comment: 22 pages, 9 figure
Gilbert Damping in Magnetic Multilayers
We study the enhancement of the ferromagnetic relaxation rate in thin films
due to the adjacent normal metal layers. Using linear response theory, we
derive the dissipative torque produced by the s-d exchange interaction at the
ferromagnet-normal metal interface. For a slow precession, the enhancement of
Gilbert damping constant is proportional to the square of the s-d exchange
constant times the zero-frequency limit of the frequency derivative of the
local dynamic spin susceptibility of the normal metal at the interface.
Electron-electron interactions increase the relaxation rate by the Stoner
factor squared. We attribute the large anisotropic enhancements of the
relaxation rate observed recently in multilayers containing palladium to this
mechanism. For free electrons, the present theory compares favorably with
recent spin-pumping result of Tserkovnyak et al. [Phys. Rev. Lett.
\textbf{88},117601 (2002)].Comment: 1 figure, 5page
To Learn or Not to Learn Features for Deformable Registration?
Feature-based registration has been popular with a variety of features
ranging from voxel intensity to Self-Similarity Context (SSC). In this paper,
we examine the question on how features learnt using various Deep Learning (DL)
frameworks can be used for deformable registration and whether this feature
learning is necessary or not. We investigate the use of features learned by
different DL methods in the current state-of-the-art discrete registration
framework and analyze its performance on 2 publicly available datasets. We draw
insights into the type of DL framework useful for feature learning and the
impact, if any, of the complexity of different DL models and brain parcellation
methods on the performance of discrete registration. Our results indicate that
the registration performance with DL features and SSC are comparable and stable
across datasets whereas this does not hold for low level features.Comment: 9 pages, 4 figure
Coupled multimode optomechanics in the microwave regime
The motion of micro- and nanomechanical resonators can be coupled to
electromagnetic fields. This allows to explore the mutual interaction and
introduces new means to manipulate and control both light and mechanical
motion. Such optomechanical systems have recently been implemented in
nanoelectromechanical systems involving a nanomechanical beam coupled to a
superconducting microwave resonator. Here, we propose optomechanical systems
that involve multiple, coupled microwave resonators. In contrast to similar
systems in the optical realm, the coupling frequency governing photon exchange
between microwave modes is naturally comparable to typical mechanical
frequencies. For instance this enables new ways to manipulate the microwave
field, such as mechanically driving coherent photon dynamics between different
modes. In particular we investigate two setups where the electromagnetic field
is coupled either linearly or quadratically to the displacement of a
nanomechanical beam. The latter scheme allows to perform QND Fock state
detection. For experimentally realistic parameters we predict the possibility
to measure an individual quantum jump from the mechanical ground state to the
first excited state.Comment: 6 pages, 4 figures, 1 tabl
Conceptual design of single turbofan engine powered light aircraft
The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented
New summing algorithm using ensemble computing
We propose an ensemble algorithm, which provides a new approach for
evaluating and summing up a set of function samples. The proposed algorithm is
not a quantum algorithm, insofar it does not involve quantum entanglement. The
query complexity of the algorithm depends only on the scaling of the
measurement sensitivity with the number of distinct spin sub-ensembles. From a
practical point of view, the proposed algorithm may result in an exponential
speedup, compared to known quantum and classical summing algorithms. However in
general, this advantage exists only if the total number of function samples is
below a threshold value which depends on the measurement sensitivity.Comment: 13 pages, 0 figures, VIth International Conference on Quantum
Communication, Measurement and Computing (Boston, 2002
Stratified decision forests for accurate anatomical landmark localization in cardiac images
Accurate localization of anatomical landmarks is an important step in medical imaging, as it provides useful prior information for subsequent image analysis and acquisition methods. It is particularly useful for initialization of automatic image analysis tools (e.g. segmentation and registration) and detection of scan planes for automated image acquisition. Landmark localization has been commonly performed using learning based approaches, such as classifier and/or regressor models. However, trained models may not generalize well in heterogeneous datasets when the images contain large differences due to size, pose and shape variations of organs. To learn more data-adaptive and patient specific models, we propose a novel stratification based training model, and demonstrate its use in a decision forest. The proposed approach does not require any additional training information compared to the standard model training procedure and can be easily integrated into any decision tree framework. The proposed method is evaluated on 1080 3D highresolution and 90 multi-stack 2D cardiac cine MR images. The experiments show that the proposed method achieves state-of-theart landmark localization accuracy and outperforms standard regression and classification based approaches. Additionally, the proposed method is used in a multi-atlas segmentation to create a fully automatic segmentation pipeline, and the results show that it achieves state-of-the-art segmentation accuracy
- …