168 research outputs found

    Numerical and experimental study of the powder bed characteristics in the recoated bed of the additive manufacturing process

    Get PDF
    Part of the optimization steps for additive manufacturing is related to the correct understanding of the mechanical behavior of the powder used in the process. Obtain this understanding based purely on experiments might be a difficult and sometimes prohibitive task. A particle-based numerical tool can provide critical information for correct understanding of powder deposition process. Numerical simulations through the Discrete Element Method (DEM) provide a useful mean to investigate the additive manufacturing process, given the possibility to study particle-scale information that are difficult to access experimentally. The characteristics of the recoated powder bed are investigated in the packed bed region and onto the manufactured part using PA12 commercial powder. Particle size distribution, contact and non-contact cohesive forces are incorporated in the numerical model. Furthermore, the non-spherical shape of real particles is taken explicitly into account in numerical simulations. A blade-type recoating system is used to form the powder bed and its roughness is calculated. Experimental measurements are performed by fringe projection. Several areas of the recoated powder layers can be scanned with this optical measurement method. Thus, the analyzed surface roughness can be compared with the simulated quantities to validate the numerical model. The sintered part is modelled as a prescribed rigid static region in the simulated system. The powder recoated in the sintered region may have different characteristics (packing, roughness) compared to the powder bed region. Recoating process is modelled using two different shapes for the sintered region. The amount of material recoated and the surface roughness are then calculated for the powder bed as well as for the sintered region

    Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures

    Get PDF
    The bone ingrowth potential of biomimetic hydroxyapatite and brushite coatings applied on porous E-beam structure was examined in goats and compared to a similar uncoated porous structure and a conventional titanium plasma spray coating. Specimens were implanted in the iliac crest of goats for a period of 3 (4 goats) or 15 weeks (8 goats). Mechanical implant fixation generated by bone ingrowth was analyzed by a push out test. Histomorphometry was performed to assess the bone ingrowth depth and bone implant contact. The uncoated and hydroxyapatite-coated cubic structure had significantly higher mechanical strength at the interface compared to the Ti plasma spray coating at 15 weeks of implantation. Bone ingrowth depth was significantly larger for the hydroxyapatite- and brushite-coated structures compared to the uncoated structure. In conclusion, the porous E-beam surface structure showed higher bone ingrowth potential compared to a conventional implant surface after 15 weeks of implantation. Addition of a calcium phosphate coating to the E-beam structure enhanced bone ingrowth significantly. Furthermore, the calcium phosphate coating appears to work as an accelerator for bone ingrowth

    Patient reported outcome measures for allergy and asthma in children:PROMS for allergy and asthma in children

    Get PDF
    There is increasing recognition of the importance of patient's perceptions of disease and their assessments of heathcare processes. Patient‐reported outcome measures (PROMs) are therefore now regarded as at least as important as the traditional objective measures of disease. For minors, parental and, except in the very young and severally cognitively impaired, the child's perspectives are important because they provide unique and complementary information. In this review, we summarize the evidence on PROMs for allergy and asthma for use in children. Overall, there are fewer PROMs available for use in children than in adults. We were able to identify some validated pediatric PROMs that have been developed for use in atopic eczema/dermatitis, food allergy, allergic rhinitis/rhinoconjunctivitis, and asthma. There is very limited evidence on deploying these instruments out with research settings. There is therefore a pressing need to report on the experiences of using PROMs for allergy and asthma in routine clinical care. In particular, there is a need to understand how acceptable these are to children/carers, whether they can be incorporated into routine clinical assessments and if they are responsive to changes in treatment made in routine clinical practice

    Report from the fourth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative)

    Get PDF
    This article is a report of the fourth meeting of the Harmonising Outcome Measures for Eczema (HOME) initiative held in Malmö, Sweden on 23–24 April 2015 (HOME IV). The aim of the meeting was to achieve consensus over the preferred outcome instruments for measuring patient-reported symptoms and quality of life for the HOME core outcome set for atopic eczema (AE). Following presentations, which included data from systematic reviews, consensus discussions were held in a mixture of whole group and small group discussions. Small groups were allocated a priori to ensure representation of different stakeholders and countries. Decisions were voted on using electronic keypads. For the patient-reported symptoms, the group agreed by vote that itch, sleep loss, dryness, redness/inflamed skin and irritated skin were all considered essential aspects of AE symptoms. Many instruments for capturing patient-reported symptoms were discussed [including the Patient-Oriented SCOring Atopic Dermatitis index, Patient-Oriented Eczema Measure (POEM), Self-Administered Eczema Area and Severity Index, Itch Severity Scale, Atopic Dermatitis Quickscore and the Nottingham Eczema Severity Score] and, by consensus, POEM was selected as the preferred instrument to measure patient-reported symptoms. Further work is needed to determine the reliability and measurement error of POEM. Further work is also required to establish the importance of pain/soreness and the importance of collecting information regarding the intensity of symptoms in addition to their frequency. Much of the discussion on quality of life concerned the Dermatology Life Quality Index and Quality of Life Index for Atopic Dermatitis; however, consensus on a preferred instrument for measuring this domain could not be reached. In summary, POEM is recommended as the HOME core outcome instrument for measuring AE symptoms

    Developmental trajectories of neuroanatomical alterations associated with the 16p11.2 Copy Number Variations

    Get PDF

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF

    Impact of food processing and detoxification treatments on mycotoxin contamination

    Get PDF
    • 

    corecore