33 research outputs found

    Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes

    Get PDF
    Retinoblastoma is a rare childhood cancer initiated by RB1 mutation or MYCN amplification, while additional alterations may be required for tumor development. However, the view on single nucleotide variants is very limited. To better understand oncogenesis, we determined the genomic landscape of retinoblastoma. We performed exome sequencing of 71 retinoblastomas and matched blood DNA. Next, we determined the presence of single nucleotide variants, copy number alterations and viruses. Aside from RB1, recurrent gene mutations were very rare. Only a limited fraction of tumors showed BCOR (7/71, 10%) or CREBBP alterations (3/71, 4%). No evidence was found for the presence of viruses. Instead, specific somatic copy number alterations were more common, particularly in patients diagnosed at later age. Recurrent alterations of chromosomal arms often involved less than one copy, also in highly pure tumor samples, suggesting within-tumor heterogeneity. Our results show that retinoblastoma is among the least mutated cancers and signify the extreme sensitivity of the childhood retina for RB1 loss. We hypothesize that retinoblastomas arising later in retinal development benefit more from subclonal secondary alterations and therefore, these alterations are more selected for in these tumors. Targeted therapy based on these subclonal events might be insufficient for complete tumor control

    Colorectal cancer surveillance in Hodgkin lymphoma survivors at increased risk of therapy-related colorectal cancer: Study design

    Get PDF
    Background: Second primary malignancies are a major cause of excess morbidity and mortality in cancer survivors. Hodgkin lymphoma survivors who were treated with infradiaphragmatic radiotherapy and/or high-dose procarbazine have an increased risk to develop colorectal cancer. Colonoscopy surveillance plays an important role in colorectal cancer prevention by removal of the precursor lesions (adenomas) and early detection of cancer, resulting in improved survival rates. Therefore, Hodgkin lymphoma survivors treated with infradiaphragmatic radiotherapy and/or high-dose procarbazine could benefit from colonoscopy, or other surveillance modalities, which are expected to reduce colorectal cancer incidence and mortality. Current knowledge on clinicopathological and molecular characteristics of therapy-related colorectal cancer is limited. The pathogenesis of such colorectal cancers might be different from the pathogenesis in the general population and therefore these patients might require a different clinical approach. We designed a study with the primary aim to assess the diagnostic yield of a first surveillance colonoscopy among Hodgkin lymphoma survivors at increased risk of colorectal cancer and to compare these results with different screening modalities in the general population. Secondary aims include assessment of the test characteristics of stool tests and evaluation of burden, acceptance and satisfaction of CRC surveillance through two questionnaires. Methods/Design: This prospective multicenter cohort study will include Hodgkin lymphoma survivors who survived =8years after treatment with infradiaphragmatic radiotherapy and/or procarbazine (planned inclusion of 259 participants). Study procedures will consist of a surveillance colonoscopy with removal of precursor lesions (adenomas) and 6-8 normal colonic tissue biopsies, a fecal immunochemical test and a stool DNA test. All neoplastic lesions encountered will be classified using relevant histomorphological, immunohistochemical and molecular analyses in order to obtain more insight into colorectal carcinogenesis in Hodgkin lymphoma survivors. The Miscan-model will be used for cost-effectiveness analyses. Discussion: Evaluation of the diagnostic performance, patient acceptance and burden of colorectal cancer surveillance is necessary for future implementation of an individualized colorectal cancer surveillance program for Hodgkin lymphoma survivors. In addition, more insight into treatment-induced colorectal carcinogenesis will provide the first step towards prevention and personalized treatment. This information may be extrapolated to other groups of cancer survivors. Trial registration: Registered at the Dutch Trial Registry (NTR): NTR4961

    SPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing

    Get PDF
    In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YFand Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number

    Heterospecific transformation in <i>Bacillus subtilis</i>:Protein composition of a membrane-DNA complex containing unstable heterologous donor-recipient complex

    No full text
    Previously it was demonstrated that, in contrast to the homologous donor-recipient complex, the unstable heterologous donor-recipient complex remains bound to the cellular membrane. To examine whether proteins known to be involved in the processing of transforming DNA in Bacillus subtilis are associated with membrane fragments which carry chromosomal DNA, a crude membrane-DNA complex was subjected to electrophoresis through a sucrose gradient. This resulted in the separation of membrane fragments associated with DNA and free membrane fragments. By means of two-dimensional gel electrophoresis several proteins, either uniquely present or considerably enriched in the purified membrane-DNA complex, were detected. Among these proteins we identified the 45 kD recE gene product, required for recombination, the 18 kD binding protein involved in the binding of transforming DNA and a 17 kD nuclease involved in the entry of transforming DNA. These results suggest that the membrane sites at which donor DNA integrates into the recipient chromosome are in the vicinity of the sites of entry of donor DNA through the membrane

    Molecular fate of heterologous bacterial DNA in competent Bacillus subtilis:Further characterization of unstable association between donor and recipient DNA and the involvement of the cellular membrane

    No full text
    Although heterospecific transformation is extremely inefficient and very little heterologous donor DNA integrates into the recipient chromosome in a stable way, we have previously shown that B. pumilus DNA entering competent B. subtilis efficiently associates with the recipient chromosome in an unstable way. This association can be stabilized by photocrosslinking in the presence of 4,5′,8-trimethylpsoralen; it depends on the recombination proficiency of the recipient strain and on strand-separation of the recipient chromosome (te Riele and Venema 1982b). The present study provides further evidence that the heterologous donor DNA and the recipient DNA are associated by regions of base-pairing. Based on the high sensitivity of the donor moiety in the complex to nuclease S1 (90%) and the high sensitivity of the complex to moderate denaturing conditions (Tm=48°C), we presume that donor and recipient DNA are associated either by several short sequences of 15–25 fairly well matched base pairs or by a region of base-pairing of about 200 bases, which contains 25% of mismatches. During incubation, the unstable complex disappears, probably due to nucleolytic degradation.The unstable heterologous donor-recipient complex (DRC) was found to be membrane-bound. However, in contrast to homologous DRC, the unstable heterologous DRC remains membrane bound during incubation. Apparently, the predominantly single-stranded character of the heterologous DRC prevents release of the complex from the membrane

    Molecular Fate of Heterologous Bacterial DNA in Competent BACILLUS SUBTILIS. I. Processing of B. PUMILUS and B. LICHENIFORMIS DNA in B. SUBTILIS

    No full text
    Competent Bacillus subtilis cells were exposed to radioactive and density labeled donor DNA extracted from B. pumilus and B. licheniformis. The DNA from these strains hybridized with B. subtilis DNA in vitro at a rate of 24% and 11%, respectively. After entry the vast majority of heterologous DNA was found at the single-strand DNA position in CsCl gradients, and was gradually degraded during incubation. Much less donor DNA than expected from the hybridization values participated in the formation of the donorrecipient complex (DRC). By subjecting the heterologous DRC to sonication and alkaline CsCl gradient centrifugation, it was established that the DRC consisted of three components: (1) recipient DNA in which breakdown products of donor DNA were incorporated through DNA synthesis, (2) recipient DNA in which donor DNA was covalently integrated and (3) recipient DNA in which the donor moiety was not covalently integrated

    Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes

    No full text
    Retinoblastoma is a rare childhood cancer initiated by RB1 mutation or MYCN amplification, while additional alterations may be required for tumor development. However, the view on single nucleotide variants is very limited. To better understand oncogenesis, we determined the genomic landscape of retinoblastoma. We performed exome sequencing of 71 retinoblastomas and matched blood DNA. Next, we determined the presence of single nucleotide variants, copy number alterations and viruses. Aside from RB1, recurrent gene mutations were very rare. Only a limited fraction of tumors showed BCOR (7/71, 10%) or CREBBP alterations (3/71, 4%). No evidence was found for the presence of viruses. Instead, specific somatic copy number alterations were more common, particularly in patients diagnosed at later age. Recurrent alterations of chromosomal arms often involved less than one copy, also in highly pure tumor samples, suggesting within-tumor heterogeneity. Our results show that retinoblastoma is among the least mutated cancers and signify the extreme sensitivity of the childhood retina for RB1 loss. We hypothesize that retinoblastomas arising later in retinal development benefit more from subclonal secondary alterations and therefore, these alterations are more selected for in these tumors. Targeted therapy based on these subclonal events might be insufficient for complete tumor control
    corecore