41 research outputs found

    Saturn Atmospheric Structure and Dynamics

    Full text link
    2 Saturn inhabits a dynamical regime of rapidly rotating, internally heated atmospheres similar to Jupiter. Zonal winds have remained fairly steady since the time of Voyager except in the equatorial zone and slightly stronger winds occur at deeper levels. Eddies supply energy to the jets at a rate somewhat less than on Jupiter and mix potential vorticity near westward jets. Convective clouds exist preferentially in cyclonic shear regions as on Jupiter but also near jets, including major outbreaks near 35°S associated with Saturn electrostatic discharges, and in sporadic giant equatorial storms perhaps generated from frequent events at depth. The implied meridional circulation at and below the visible cloud tops consists of upwelling (downwelling) at cyclonic (anti-cyclonic) shear latitudes. Thermal winds decay upward above the clouds, implying a reversal of the circulation there. Warm-core vortices with associated cyclonic circulations exist at both poles, including surrounding thick high clouds at the south pole. Disequilibrium gas concentrations in the tropical upper troposphere imply rising motion there. The radiative-convective boundary and tropopause occur at higher pressure in the southern (summer) hemisphere due to greater penetration of solar heating there. A temperature “knee ” of warm air below the tropopause, perhaps due to haze heating, is stronger in the summer hemisphere as well. Saturn’s south polar stratosphere is warmer than predicted by radiative models and enhanced in ethane, suggesting subsidence-driven adiabatic warming there. Recent modeling advances suggest that shallow weather laye

    Using HPLC sugar analysis to study nectar and honeydew feeding in the field.

    No full text
    Spodoptera frugiperda is a pest of great economic importance in the Americas. It is attacked by several species of parasitoids, which act as biological control agents. Parasitoids are morphologically identifiable as adults, but not as larvae. Laboratory rearing conditions are not always optimal to rear out parasitic wasps from S. frugiperda larvae collected from wild populations, and it frequently happens that parasitoids do not complete their life cycle and stop developing at the larval stage. Therefore, we explored ways to identify parasitoid larvae using molecular techniques. Sequencing is one possible technique, yet it is expensive. Here we present an alternate, cheaper way of identifying seven species of parasitoids (Cotesia marginiventris, Campoletis sonorensis, Pristomerus spinator, Chelonus insularis, Chelonus cautus, Eiphosoma vitticolle and Meteorus laphygmae) using PCR amplification of COI gene followed by a digestion with a combination of four restriction endonucleases. Each species was found to exhibit a specific pattern when the amplification product was run on an agarose gel. Identifying larvae revealed that conclusions on species composition of a population of parasitic wasps can be biased if only the emerging adults are taken into account

    Life-history strategies in parasitoid wasps: a comparative analysis of 'ovigeny'

    No full text
    1. Ecologists concerned with life-history strategies of parasitoid wasps have recently focused on interspecific variation in the fraction of the maximum potential lifetime egg complement that is mature when the female emerges into the environment. Species that have all of this complement mature upon emergence are termed 'pro-ovigenic', while those that do not are termed 'synovigenic'. We document and quantify the diversity of egg maturation patterns among 638 species of parasitoid wasps from 28 families. 2. We test a series of hypotheses concerning variation in 'ovigeny' and likely life- history correlates by devising a quantitative index - the proportion of the maximum potential lifetime complement that is mature upon female emergence. 3. Synovigeny, which we define as emerging with at least some immature eggs, was found to be by far the predominant egg maturation pattern (98.12% of species). Even allowing for some taxonomic bias in our sample of species, pro-ovigeny is rare among parasitoid wasps. 4. There is strong evidence for a predicted continuum in ovigeny index among parasitoid wasps, from pro-ovigenic (ovigeny index = 1) to extremely synovigenic species (ovigeny index = 0). 5. As predicted, synovigenic species are longer-lived than pro- ovigenic ones, and ovigeny index and life span are negatively correlated across parasitoid taxa, suggesting a life span cost of concentrating reproductive effort early in adult life. 6. There is equivocal evidence that host feeding (i.e, consumption of host haemolymph and/or tissues by adult wasps) is confined to synovigenic parasitoid wasps. It is also not certain from our analyses whether host feeding is associated with a relatively low ovigeny index. 7. As predicted, egg resorption capability is concentrated among producers of yolk-rich eggs. Also, the hypothesis that it is associated with a tendency towards a low ovigeny index is supported. Parasitoid species that produce yolk-rich eggs also exhibit a lower ovigeny index than species that produce yolk-deficient eggs. 8. Ovigeny index appears to be linked to parasitoid development mode (koinobiosis-idiobiosis). 9. We conclude that 'ovigeny' is a concept applicable to insects generally. [KEYWORDS: feeding strategies; pro-ovigeny; synovigeny; timing of reproduction Leptopilina-boulardi hymenoptera; host-feeding strategies; egg limitation; reproductive-biology; clutch size; independent contrasts; functional-response; asobara-tabida; drosophila-melanogaster; evolutionary argument

    Discussion on Emergencies in General Practice

    No full text
    In the Hymenoptera, males develop as haploids from unfertilized eggs and females develop as diploids from fertilized eggs. In species with complementary sex determination (CSD), however, diploid males develop from zygotes that are homozygous at a highly polymorphic sex locus or loci. We investigated mating behavior and reproduction of diploid males of the parasitoid wasp Cotesia vestalis (C. plutellae), for which we recently demonstrated CSD. We show that the behavior of diploid males of C. vestalis is similar to that of haploid males, when measured as the proportion of males that display wing fanning, and the proportion of males that mount a female. Approximately 29% of diploid males sired daughters, showing their ability to produce viable sperm that can fertilize eggs. Females mated to diploid males produced all-male offspring more frequently (71%) than females mated to haploid males (27%). Daughter-producing females that had mated to diploid males produced more male-biased sex ratios than females mated to haploid males. All daughters of diploid males were triploid and sterile. Three triploid sons were also found among the offspring of diploid males. It has been suggested that this scenario, that is, diploid males mating with females and constraining them to the production of haploid sons, has a large negative impact on population growth rate and secondary sex ratio. Selection for adaptations to reduce diploid male production in natural populations is therefore likely to be strong. We discuss different scenarios that may reduce the sex determination load in C. vestalis

    Complementary sex determination in the parasitoid wasp Cotesia vestalis (C. plutellae)

    No full text
    In the Hymenoptera, single locus complementary sex determination (sl-CSD) describes a system where males develop either from unfertilized haploid eggs or from fertilized diploid eggs that are homozygous at a single polymorphic sex locus. Diploid males are often inviable or sterile, and are produced more frequently under inbreeding. Within families where sl-CSD has been demonstrated, we predict that sl-CSD should be more likely in species with solitary development than in species where siblings develop gregariously (and likely inbreed). We examine this prediction in the parasitoid wasp genus Cotesia, which contains both solitary and gregarious species. Previous studies have shown that sl-CSD is absent in two gregarious species of Cotesia, but present in one gregarious species. Here, we demonstrate CSD in the solitary Cotesia vestalis, using microsatellite markers. Diploid sons are produced by inbred, but not outbred, females. However, frequencies of diploid males were lower than expected under sl-CSD, suggesting that CSD in C. vestalis involves more than one locus. [KEYWORDS: developmental mortality ; diamondback moth ; diploid males ; inbreeding ; mating system ; sex ratio

    Gut sugar analysis in field-caught parasitoids: adapting methods originally developed for biting flies

    No full text
    The ability to determine the presence and identity of sugars in the guts of adult parasitoids in the field would aid researchers in addressing long-standing problems in parasitoid ecology. Until very recently, however, gut sugar analyses have not been carried out on parasitoids. This is despite the development and use of methodologies for gut sugar analyses in biting flies (mosquitoes, sand-flies, black-flies, horse- and deer-flies, and biting midges) for decades. Methods used have been the cold anthrone test for the detection of gut sugars, and various forms of chromatography for the identification of gut sugars. We review the use of these methods in biting fly research and then describe the nascent field of gut sugar analyses in parasitoids. Both cold anthrone and chromatography tests have begun to be used on field-caught parasitoids, and we describe progress from our own work. We used cold anthrone on the aphid parasitoid Aphelinus albipodus (Hymenoptera: Aphelinidae), and results from one field study show that approximately one-fifth of individuals tested were positive for gut sugars. The characteristics of the field site point to the primary source of these gut sugars as being aphid honeydew. We also analysed the gut contents of Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth. In this case, HPLC analyses showed that over 85% of field-captured individuals had fed upon sugars. These same analyses suggested that honeydew may have been a major source of the gut sugars in this case also, but the sugar profiles suggest some nectar feeding. Understanding the importance of various sugar sources on parasitoid activity and effectiveness will facilitate the incorporation of sugar sources in habitat manipulation programmes as a part of IPM. [KEYWORDS: parasitoids, anthrone tests, sugar feeding, nectar, honeydew]

    Best practices for the use and exchange of invertebrate biological control genetic resources relevant for food and agriculture

    No full text
    The Nagoya Protocol is a supplementary agreement to the Convention on Biological Diversity that provides a framework for the effective implementation of the fair and equitable sharing of benefits arising out of the utilization of genetic resources, including invertebrate biological control agents. The Protocol came into force on 12 October 2014, and requires signatories and countries acceding to the Protocol to develop a legal framework to ensure access to genetic resources, benefit-sharing and compliance. The biological control community of practice needs to comply with access and benefit sharing regulations arising under the Protocol. The IOBC Global Commission on Biological Control and Access and Benefit Sharing has prepared this best practices guide for the use and exchange of invertebrate biological control genetic resources for the biological control community of practice to demonstrate due diligence in responding to access and benefit sharing requirements, and to reassure the international community that biological control is a very successful and environmentally safe pest management method based on the use of biological diversity. We propose that components of best practice include: collaborations to facilitate information exchange about what invertebrate biological control agents are available and where they may be obtained; knowledge sharing through freely available databases that document successes (and failures); cooperative research to develop capacity in source countries; and transfer of production technology to provide opportunities for small-scale economic activity. We also provide a model concept agreement that can be used for scientific research and non-commercial release into nature where access and benefit sharing regulations exist, and a model policy for provision of invertebrate biological control agents to other parties where access and benefit sharing regulations are not restrictive or do not exist
    corecore