129 research outputs found

    Experimentelle Untersuchungen am magnetischen Hybridsystem (Ga,Mn)As/MnAs

    Get PDF
    Die heutige Halbleiterelektronik und Optoelektronik basiert auf elektrischen Strömen und Spannungen, wobei hauptsächlich die Ladungseigenschaft der Elektronen ausgenutzt wird. Elektronen besitzen aber auch noch eine weitere interessante Eigenschaft, und zwar den Spin. Die Idee, beide Eigenschaften gleichzeitig in Bauelementen auszunutzen, ist der Grundgedanke eines neuen Forschungsgebiets innerhalb der Physik, der sog. Spinelektronik (auch einfach Spintronik genannt). Sie wird als eine der Schlüsseltechnologien der Zukunft angesehen, da man sich von ihr wesentlich schnellere und leistungsfähigere Bauelemente verspricht, die zudem noch größere Informationsdichten aufweisen und sparsamer mit der Energie umgehen. In ihr werden Elektronik, Optik und Magnetismus synergetisch miteinander verknüpft. Die neue Ära begann 1988 mit der Entdeckung des GMR-Effekts in metallischen Schichtsystemen (giant magnetoresistance) durch Baibich et al.. GMR ist die dramatische Änderung der Leitfähigkeit in alternierenden ferromagnetischen und nicht-magnetischen Schichten bei angelegtem Magnetfeld. Auf dem GMR-Effekt basierende Leseköpfe in Festplattenlaufwerken, die IBM 1997 ankündigte, sind zur Zeit die wichtigste Anwendung dieses Effekts. Durch sie wird die Speicherdichte um das 20-fache gesteigert. Eine der weiteren Anwendungen ist der magnetische Arbeitsspeicher MRAM (magnetic random access memory). Dies ist ein Permanentspeicher (non-volatile storage), der seine Information auch ohne Stromversorgung noch behält, d.h. das lästige "Hochfahren" von Computern würde in Zukunft der Vergangenheit angehören! Man könnte immer dort weiter arbeiten, wo man das letzte Mal aufgehört hat. Seine Vorteile liegen außerdem in einem reduzierten Energieverbrauch, 1000-fach schnellerer Schreibgeschwindigkeit im Vergleich zum EPROM (erasable programmable read-only memory) und bei einer um fünf Größenordnungen schnelleren Auslesegeschwindigkeit gegenüber Festplattenlaufwerken. Prototypen dieser MRAMs mit Kapazitäten in der Megabit-Region existieren bereits. Diese neuartigen Bauelemente funktionieren bisher auf Basis ferromagnetischer Metalle. Um sie mit bewährten Bauelementen direkt kombinieren zu können, ist man bestrebt, die Spintronik kompatibel zur bestehenden Halbleiter-(Opto-)Elektronik zu gestalten. Deswegen ist man auf der Suche nach ferromagnetischen Halbleitern. Im Rahmen der Spintronik sollte es möglich sein, Spins zu polarisieren, transportieren, injizieren, speichern, detektieren und manipulieren. Wie Michael Oestreich et al. anhand eines paramagnetischen (II,Mn)VI-Halbleiters gezeigt haben, sind verdünnte magnetische Halbleiter (VMH), bei denen ein Teil der Ionen durch magnetische Ionen ersetzt ist, aufgrund ihrer riesigen Zeemanaufspaltung besonders dazu geeignet, Elektronen mit einer hohen Spinpolarisation in Halbleiter zu injizieren. VMH sind also im Gegensatz zu ferromagnetischen Metallen, die bei der Injektion grundsätzlich nur eine geringe Spin-Polarisation erlauben, gute Spin-Ausrichter (Spin-Aligner). Allerdings funktioniert dies mit (II,Mn)VI-VMH nur bei sehr tiefen Temperaturen und hohen Magnetfeldern. Ferromagnetische Halbleiter könnten dort Abhilfe schaffen. GaAs ist neben Si das bedeutendste Halbleitermaterial. Durch Einbringen von magnetischen Mangan-Ionen ist es bereits gelungen, Curietemperaturen von bis zu 172 Kelvin zu erreichen. Für etwaige spätere Anwendungen sind allerdings Curietemperaturen oberhalb der Raumtemperatur wünschenswert, damit die Bauelemente ohne aufwendige Kühlung arbeiten könnten. Das im Rahmen dieser Arbeit untersuchte Hybridsystem, welches aus erstmals mittels metallorganischer Gasphasenepitaxie (MOVPE) hergestellten (Ga,Mn)As-Schichten mit eingebetteten ferromagnetischen MnAs-Clustern besteht, könnte sich als geeignet herausstellen. Einerseits liegt die Curietemperatur bei etwa 330 Kelvin und andererseits lassen sich die Schichten auf gängige Halbleiter wie GaAs aufwachsen. Mit AlAs können sie sogar überwachsen werden. Ein weiterer Vorteil dieses Hybridsystems liegt darin, dass es durch geeignete Dotierung n-leitend wird, was aufgrund der im Vergleich zur p-Leitung langsameren Spindephasierungszeiten ebenso wünschenswert ist. In der vorliegenden Arbeit werden in Kapitel 2 zunächst die grundlegenden Eigenschaften von (Ga,Mn)As und MnAs, sowie die untersuchten Proben vorgestellt. Kapitel 3 beschäftigt sich mit systematischen Winkel- und Temperatur-abhängigen ferromagnetischen Resonanzmessungen (FMR), die Auskunft über die magnetischen Eigenschaften der MnAs-Cluster geben. Magnetooptische Experimente an den Proben sowie ihre interessanten Ergebnisse werden in Kapitel 4 beschrieben. Dort wird u.a. gezeigt, dass das bedeutende Valenzband-Austauschintegral N0ß keine Materialkonstante ist, wie in vielen Beschreibungen des Magnetismus von (Ga,Mn)As angenommen wird, sondern sogar sein Vorzeichen ändern kann

    Magneto-transport in (Ga,Mn)As-based alloys and hybrids

    Get PDF
    The work described in this thesis has to be seen in the context of developing semiconductor technology towards controlling the spin character of carriers in semiconductors. In this spintronic field, one of the present aims is to achieve a controllable ferromagnetic semiconductor at room temperature. One way is to enhance the Curie temperature in the MBE-grown II(Mn)-VI and III(Mn)-V DMS alloys. Another alternative are hybrid structures including a ferromagnetic component with Curie temperature above room temperature. Therefore, the spin-related transport properties were investigated in GaMnAs-based alloys and hybrids grown by MOVPE and MBE in this thesis. The obtained important results are as follows: 1)Unusual positive and negative MR, which are very sensitive to the Mn concentration, were observed at low temperatures in paramagnetic GaAs:Mn alloys grown by MOVPE.It is suggested that the interplay of two effects plays an important role. One is the magnetic field-dependent spin splitting of the valence band caused by the sp-d exchange between the Mn A0 (d5+h) centers and the band states. The other is the disorder effect induced by Mn incorporation. The competition of these two effects is responsible for the unusual positive and negative MR effects. 2)A theoretical calculation by a network and a mobility model based on a phenomenological description was successfully used to explain the experimental MR results in the II(Mn)-VI and III(Mn)-V DMS with low Mn concentration. By adjusting the weighting of the effects of occupation of the four spin-subbands and of disorder, the negative and positive MR behavior is obtained in these two models. The theoretical results are in good agreement with the experimental results. 3)By Te doping into paramagnetic GaAs:Mn with small Mn concentration, a control of the carrier concentration by Te incorporation is almost independent of the Mn concentration. The Hall measurements reveal the majority carrier type from p to n type with Te co-doping. Te co-doping causes a transition from VB transport to CB transport. In the case of conduction band transport, the s-d exchange interaction induced conduction band splitting and its contributions to the MR is of minor importance, confirming that the |N0b| >> |N0a| in (Ga,Mn)As.The MCD measurements reveal that due to Te co-doping the valence band filled with electrons consequently leads to Mn acting as A- centers and an AFM type coupling between VB states and the Mn spins. This result confirms that the sign and magnitude of exchange integral N0b indicating FM or AFM coupling between spins of the VB carriers and the Mn ions can be tuned by the local electronic structure of the Mn ion. 4)The series GaAs:Mn/MnAs paramagnetic-ferromagnetic hybrids prepared either by MOVPE directly or by post-growth annealing of GaMnAs alloys grown by low-temperature MBE are studied based on the understanding of GaAs:Mn alloys. Large unusual MR effects are found in the hybrids including MnAs clusters with NiAs structure grown by MOVPE, e.g. a –30% negative MR at low temperature and change to 160% positive MR with increasing temperature. The ferromagnetic MnAs cluster leads to a local localization process of the carriers around the clusters and act as a spin-filter, which is suggested to be responsible for the observed unusual coexistence of the large negative and positive MR effects. The MR and Hall effect investigated in these hybrids confirm that the interplay of the paramagnetic matrix and of the MnAs clusters dominates the spin-dependent transport behaviour. Both, the properties of the matrix and of the MnAs clusters strongly depend on the preparation procedure. 5)The FMR measurements indicate that two type of MnAs clusters form in the post-growth annealing of GaMnAs alloys grown by low-temperature MBE. One of them is confirmed as the same as the one observed in the hybrids grown by MOVPE with NiAs-structure (type I). The other one (type II) is of much lower Curie temperature and different structure. 6)The geometry dependence of the MR and Hall effect of the GaAs:Mn/MnAs hybrid reveals that the degree of microscopic interaction between the free carriers in the paramagnetic semiconductor host and the ferromagnetic MnAs clusters also strongly depends on the transport geometry and the resulting current path through the sample. The hydrostatic pressure dependence of the MR and the Hall effect are consistent with what happens in II-VI DMS and InMnAs, i.e., an enhanced p-d exchange interaction by increasing applied hydrostatic pressure. However, these effects are partly compensated by the pressure-induced variation of the carrier density. Therefore, the properties of GaAs:Mn/MnAs-based hybrids indicate that the paramagnetic-ferromagnetic structures exhibit large spin-dependent transport effects. These effects can be tuned by the growth conditions, by the growth procedure, and by external physical parameters

    Stickstoffinduzierte Bandbildung in den metastabilen Halbleitersystemen Ga(N,As) und (Ga,In)(N,As)

    Get PDF
    In der vorliegenden Arbeit wurden grundlegende physikalische Eigenschaften der metastabilen Halbleitersysteme Ga(N,As) und (Ga,In)(N,As) vorgestellt. Es werden die großen Veränderungen der optischen Eigenschaften durch den Einbau von Stickstoff beschrieben. Durch den großen Unterschied in Elektronegativität und Größe wirkt der Einbau des Stickstoffatoms an der Stelle des Arsenatoms als große Störung in diesem Materialsystem. In einkristallinen Ga(N,As) Schichten existieren stickstoffartige, lokalisierte Zustände bis zu einer Stickstoffkonzentration von fast xN=1%, wobei die stickstoffinduzierte Rotverschiebung der Bandlücke des GaNxAs1-x Mischkristalls bei sehr kleinen Konzentrationen einsetzt. Schon für xN=0.043% ist eine deutliche Rotverschiebung der Bandlücke zu beobachten. Ein neues stickstoffinduziertes Band wurde für xN=0.21% gefunden, welches mit Erhöhung von xN zu höheren Energien verschiebt. Die Rotverschiebung der Bandlücke und die Blauverschiebung des neuen stickstoffinduzierten Bandes kann qualitativ durch eine Bandabstoßung zwischen der ungestörten Bandkante des stickstofffreien Materials und dem lokalisierten isoelektronischen Störstellenzustand, welcher etwa 200meV oberhalb der Leitungsbandkante liegt, beschrieben werden. Bei dem quaternären Halbleitermaterialsystem (Ga,In)(N,As) gibt es einen großen Zusammenhang zwischen der globalen Bandstruktur und der lokalen Umgebung der isoelektronischen Störstelle. Die Umgebung des N-Atoms kann z.B. durch nachträgliches Hydrogenieren verändert werden. Bei der Hydrogenierung geht das H-Atom fast ausschließlich Bindungen mit dem N-Atom ein, und es werden unterschiedliche N-Hn Komplexe gebildet. Die Bildung dieser N-Hn Komplexe kompensiert den Größenunterschied zwischen dem As- und dem N-Atom und sättigt die Elektronenbindungen des N-Atoms ab. Es wird also die große Störung des Kristallgitters durch den Einbau der isoelektronischen Störstelle verringert oder komplett aufgehoben. Die Folge daraus ist, dass die beobachtete elektronische Bandstruktur des vollständig hydrogenierten GaNxAs1-x gleich der von stickstofffreiem GaAs ist. Bei dem nachträglichen Ausheizen von Ga1-yInyNxAs1-x sind die Veränderungen der elektronischen Bandstruktur ähnlich. Bei kontrollierten Ausheizbedingungen ist es möglich, eine Umordnung der lokalen Stickstoffumgebung hervorzurufen. So kann das Stickstoffatom von einer galliumreicheren Umgebung, zu einer indiumreicheren Umgebung umgesetzt werden. Jede Konfiguration der nächsten-Nachbar-Umgebung des N-Atoms besitzt eine unterschiedliche Bandlückenenergie, was mittels Modulationsspektroskopie aufgelöst und somit nachgewiesen werden konnte. Unter der Annahme, dass eine theoretische Beschreibung der elektronischen Bandstruktur des quaternären Ga1-yInyNxAs1-x Materialsystems mit Hilfe von einem k·P Modell möglich ist, stehen im dritten Ergebnisteil der Arbeit die elektronischen Zustände von GaNxAs1-x/GaAs Quantenschichtstrukturen und deren theoretische Beschreibung im Mittelpunkt. Alleine mit dem einfachen Bandabstoßungsmodell kann eine große Anzahl von experimentell gefundenen Bandstrukturveränderungen durch den Einbau von Stickstoff beschrieben werden. Diese stickstoffinduzierten Veränderungen sind in den Quantenschichtstrukturen die Nicht-Parabolizität der Leitungsbanddispersion und die starke Abhängigkeit der effektiven Elektronenmasse von der Stickstoffkonzentration. Durch die Kombination mit dem Bandabstoßungsmodell wurde hier das für herkömmliche III-V Mischkristalle existierende 8-Band k·P Modell um zwei zusätzliche Spin-entartete, stickstoffartige Zustände erweitert. Es wurde durch den Vergleich der Ergebnisse dieses 10-Band k·P Modells mit experimentellen Daten für Interbandübergänge von verschiedenen GaNxAs1-x/GaAs Quantenschichtstrukturen ein Satz Materialparameter gewonnen. Dieser Parametersatz liefert in Verbindung mit dem k·P Modell eine gute Beschreibung der elektronischen Zustände von GaNxAs1-x /GaAs Quantenschichtstrukturen mit einer Stickstoffkonzentration 1% < xN < 4% und einer Quantenschichtbreite zwischen 2nm und 20nm. Das letzte Ergebniskapitel handelte von Ga0.77In0.23As/GaNxAs1-x und Ga0.70In0.30N0.005As0.995/GaNxAs1-x Quantenschichtstrukturen. Es wurde hier die stickstoffinduzierte Rotverschiebung gezielt genutzt, um das Leitungsband der Barriere unter das von der Quantenschicht zu schieben und so die Confinementsituation für die Elektronen entscheidend zu verändern. Es ist sogar möglich einen Bandanordnungswechsel von einer Typ I zu einer Typ II Banddiskontinuität hervorzurufen. So wurde für die Ga0.77In0.23As/GaNxAs1-x und die Ga0.70In0.30N0.005As0.995/GaNxAs1-x Quantenschichtstrukturserien ein Übergang von einer Typ I zu einer Typ II Banddiskontinuität bei einer Stickstoffkonzentration von xN=1% bzw. 3% gefunden. Eine genauere Beschreibung der gefundenen Quantenschichtübergänge mit Hilfe des 10-Band k·P Modells kann wertvolle Informationen über die Banddiskontinuitäten liefern

    Magnitude of Magnetic Field Dependence of a Possible Selective Spin Filter in ZnSe/Zn_{1-x}Mn_{x}Se Multilayer Heterostructure

    Full text link
    Spin-polarized transport through a band-gap-matched ZnSe/Zn_{1-x}Mn_{x} Se/ZnSe/Zn_{1-x}Mn_{x}Se/ZnSe multilayer structure is investigated. The resonant transport is shown to occur at different energies for different spins owing to the split of spin subbands in the paramagnetic layers. It is found that the polarization of current density can be reversed in a certain range of magnetic field, with the peak of polarization moving towards a stronger magnetic field for increasing the width of central ZnSe layer while shifting towards an opposite direction for increasing the width of paramagnetic layer. The reversal is limited in a small-size system. A strong suppression of the spin up component of the current density is present at high magnetic field. It is expected that such a reversal of the polarization could act as a possible mechanism for a selective spin filter device

    Defect induced changes on the excitation transfer dynamics in ZnS/Mn nanowires

    Get PDF
    Transients of Mn internal 3d5 luminescence in ZnS/Mn nanowires are strongly non-exponential. This non-exponential decay arises from an excitation transfer from the Mn ions to so-called killer centers, i.e., non-radiative defects in the nanostructures and is strongly related to the interplay of the characteristic length scales of the sample such as the spatial extensions, the distance between killer centers, and the distance between Mn ions. The transients of the Mn-related luminescence can be quantitatively described on the basis of a modified Förster model accounting for reduced dimensionality. Here, we confirm this modified Förster model by varying the number of killer centers systematically. Additional defects were introduced into the ZnS/Mn nanowire samples by irradiation with neon ions and by varying the Mn implantation or the annealing temperature. The temporal behavior of the internal Mn2+ (3d5) luminescence is recorded on a time scale covering almost four orders of magnitude. A correlation between defect concentration and decay behavior of the internal Mn2+ (3d5) luminescence is established and the energy transfer processes in the system of localized Mn ions and the killer centers within ZnS/Mn nanostructures is confirmed. If the excitation transfer between Mn ions and killer centers as well as migration effects between Mn ions are accounted for, and the correct effective dimensionality of the system is used in the model, one is able to describe the decay curves of ZnS/Mn nanostructures in the entire time window

    BINDING ENERGIES OF EXCITONS IN QUANTUM WELL STRUCTURES

    Get PDF
    Binding energies of excitons in quantum well structures have been studied by solving the time-dependent Schrodinger equation where the potential is made up by the confining quantum well potentials of arbitrary form and the Coulomb interaction between the electron and hole. The problem is solved without the usually assumed variational procedure and the separation ansatz for the confined electron and hole states. The wave functions for electrons and holes can be extracted from the exciton wave function and are used for the interpretation of the charge localization. PACS numbers: 71.35.-y, 73.20.Dx Theory Excitons in dimensional reduced structures have been intensively studied by various theoretical methods. In most approaches variational procedures have been included and a separation ansatz for the electron and hole wave functions has been used In this paper we present an approach which allows us to avoid the use of a large number of variational parameters as well as the separation ansatz for the z-dependence of the exciton wave function. The only fitting parameters are the effective masses of the electron and the hole. Heavy-hole (RH) and light-hole (LH) excitons are treated separately by solving two sets of 2D time dependent Schrödinger equations. In the first step, the coupling between HH and LH bands and the influence of band nonparabolicities are neglected. This procedure is justified because of our intention to study in first respect the dependence of the binding energies on different types of confinement potentials and the interplay with the Coulomb interaction in the localization of electrons and holes. (459

    Photoluminescence and photoluminescence excitation studies of lateral size effects in Zn_{1-x}Mn_xSe/ZnSe quantum disc samples of different radii

    Full text link
    Quantum disc structures (with diameters of 200 nm and 100 nm) were prepared from a Zn_{0.72}Mn_{0.28}Se/ZnSe single quantum well structure by electron beam lithography followed by an etching procedure which combined dry and wet etching techniques. The quantum disc structures and the parent structure were studied by photoluminescence and photoluminescence excitation spectroscopy. For the light-hole excitons in the quantum well region, shifts of the energy positions are observed following fabrication of the discs, confirming that strain relaxation occurs in the pillars. The light-hole exciton lines also sharpen following disc fabrication: this is due to an interplay between strain effects (related to dislocations) and the lateral size of the discs. A further consequence of the small lateral sizes of the discs is that the intensity of the donor-bound exciton emission from the disc is found to decrease with the disc radius. These size-related effects occur before the disc radius is reduced to dimensions necessary for lateral quantum confinement to occur but will remain important when the discs are made small enough to be considered as quantum dots.Comment: LaTeX2e, 13 pages, 6 figures (epsfig

    Mechanisms of enhancement of light emission in nanostructures of II–VI compounds doped with manganese

    No full text
    Intra-shell transitions of transition metal and rare earth ions are parity forbidden processes. For Mn²⁺ ions this is also a spin forbidden process, i.e., light emission should be inefficient. Surprisingly, it was reported that in nanostructures of ZnMnS the ⁴T₁ to ⁶A₁ intra-shell transition of Mn²⁺ results in a bright photoluminescence characterized by a short PL decay time. The model of a quantum confined atom was introduced to explain the observed experimental results. It was later claimed that this model is incorrect. Based on the results of our photoluminescence, photoluminescence kinetics, time-resolved photoluminescence, electron spin resonance and optically detected magnetic resonance investigations we confirm photoluminescence enhancement and decrease of photoluminescence lifetime and relate these effects to spin dependent magnetic interactions between localized spins of Mn²⁺ ions and spins/magnetic moments of free carriers. This mechanism is active in both bulk and in low-dimensional structures, but is significantly enhanced in nanostructure samples
    corecore