1,431 research outputs found

    How to be fairer

    Get PDF
    We confront the philosophical literature on fair division problems with axiomatic and game-theoretic work in economics. Firstly, we show that the proportionality method advocated in Curtis (in Analysis 74:417–57, 2014) is not implied by a general principle of fairness, and that the proportional rule cannot be explicated axiomatically from that very principle. Secondly, we suggest that Broome’s (in Proc Aristot Soc 91:87–101, 1990) notion of claims is too restrictive and that game-theoretic approaches can rectify this shortcoming. More generally, we argue that axiomatic and game-theoretic work in economics is an indispensable ingredient of any theorizing about fair division problems and allocative justice

    Theories of Fairness and Aggregation

    Get PDF
    We investigate the issue of aggregativity in fair division problems from the perspective of cooperative game theory and Broomean theories of fairness. Paseau and Saunders (Utilitas 27:460–469, 2015) proved that no non-trivial theory of fairness can be aggregative and conclude that theories of fairness are therefore problematic, or at least incomplete. We observe that there are theories of fairness, particularly those that are based on cooperative game theory, that do not face the problem of non-aggregativity. We use this observation to argue that the universal claim that no non-trivial theory of fairness can guarantee aggregativity is false. Paseau and Saunders’s mistaken assertion can be understood as arising from a neglect of the (cooperative) games approach to fair division. Our treatment has two further pay-offs: for one, we give an accessible introduction to the (cooperative) games approach to fair division, whose significance has hitherto not been appreciated by philosophers working on fairness. For another, our discussion explores the issue of aggregativity in fair division problems in a comprehensive fashion

    Dividing the indivisible: Apportionment and philosophical theories of fairness

    Get PDF
    Philosophical theories of fairness propose to divide a good that several individuals have a claim to in proportion to the strength of their respective claims. We suggest that currently, these theories face a dilemma when dealing with a good that is indivisible. On the one hand, theories of fairness that use weighted lotteries are either of limited applicability or fall prey to an objection by Brad Hooker. On the other hand, accounts that do without weighted lotteries fall prey to three fairness paradoxes. We demonstrate that division methods from apportionment theory, which has hitherto been ignored by philosophical theories of fairness, can be used to provide fair division for indivisible goods without weighted lotteries and without fairness paradoxes

    NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface

    Get PDF
    An algorithm is derived for computer simulation of geodesics on the constant potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant potential energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs in order to compensate for the accumulation of numerical errors that eventually lead to "entropic drift" of the potential energy towards higher values. A modification of the basic NVU algorithm is introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, simulations show that the NVU algorithm and the standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones liquid

    Entropy-driven phase transition in a polydisperse hard-rods lattice system

    Full text link
    We study a system of rods on the 2d square lattice, with hard-core exclusion. Each rod has a length between 2 and N. We show that, when N is sufficiently large, and for suitable fugacity, there are several distinct Gibbs states, with orientational long-range order. This is in sharp contrast with the case N=2 (the monomer-dimer model), for which Heilmann and Lieb proved absence of phase transition at any fugacity. This is the first example of a pure hard-core system with phases displaying orientational order, but not translational order; this is a fundamental characteristic feature of liquid crystals

    New Exactly Solvable Model of Strongly Correlated Electrons Motivated by High T_c Superconductivity

    Get PDF
    We present a new model describing strongly correlated electrons on a general dd-dimensional lattice. It differs from the Hubbard model by interactions of nearest neighbours, and it contains the tt-JJ model as a special case. The model naturally describes local electron pairs, which can move coherently at arbitrary momentum. By using an η\eta-pairing mechanism we can construct eigenstates of the hamiltonian with off-diagonal-long-range-order (ODLRO). These might help to relate the model to high-TcT_c superconductivity. On a one-dimensional lattice, the model is exactly solvable by Bethe Ansatz.Comment: 10 pages, using latex, Phys.Rev.Lett. 68 (1992) 296

    Air quality impact of a decision support system for reducing pollutant emissions: CARBOTRAF

    Get PDF
    Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses these off-line model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC

    Fermionic R-Operator and Integrability of the One-Dimensional Hubbard Model

    Full text link
    We propose a new type of the Yang-Baxter equation (YBE) and the decorated Yang-Baxter equation (DYBE). Those relations for the fermionic R-operator were introduced recently as a tool to treat the integrability of the fermion models. Using the YBE and the DYBE for the XX fermion model, we construct the fermionic R-operator for the one-dimensional (1D) Hubbard model. It gives another proof of the integrability of the 1D Hubbard model. Furthermore a new approach to the SO(4) symmetry of the 1D Hubbard model is discussed.Comment: 25 page

    Effects of exenatide twice daily versus sitagliptin on 24-h glucose, glucoregulatory and hormonal measures: a randomized, double-blind, crossover study

    Get PDF
    Aim: To compare exenatide and sitagliptin glucose and glucoregulatory measures in subjects with type 2 diabetes
    corecore