6 research outputs found

    Sampling of the conformational landscape of small proteins with Monte Carlo methods

    Get PDF
    Computer simulation provides an increasingly realistic picture of large-scale conformational change of proteins, but investigations remain fundamentally constrained by the femtosecond timestep of molecular dynamics simulations. For this reason, many biologically interesting questions cannot be addressed using accessible state-of-the-art computational resources. Here, we report the development of an all-atom Monte Carlo approach that permits the modelling of the large-scale conformational change of proteins using standard off-the-shelf computational hardware and standard all-atom force fields. We demonstrate extensive thermodynamic characterization of the folding process of the α-helical Trp-cage, the Villin headpiece and the β-sheet WW-domain. We fully characterize the free energy landscape, transition states, energy barriers between different states, and the per-residue stability of individual amino acids over a wide temperature range. We demonstrate that a state-of-the-art intramolecular force field can be combined with an implicit solvent model to obtain a high quality of the folded structures and also discuss limitations that still remain

    Rsp Inhibits Attachment and Biofilm Formation by Repressing fnbA in Staphylococcus aureus MW2â–¿

    No full text
    Biofilms contribute to virulence of Staphylococcus aureus. Formation of biofilms is multifactorial, involving polysaccharide, protein, and DNA components, which are controlled by various regulators. Here we report that deletion of the rsp gene resulted in an increase in biofilm formation in strain MW2, suggesting that Rsp is a repressor of biofilm formation. Using SDS-PAGE, we found that Rsp profoundly affected cell surface and secreted proteins. The rsp gene was transcribed monocistronically, and the transcripts were most abundant at the exponential growth phase. Microarray analyses revealed that Rsp represses 75 genes, including 9 genes encoding cell wall-anchored proteins, and activates 22 genes, including 5 genes encoding secreted proteases. Among these genes, fnbA, fnbB, sasG, and spa (which encode cell wall-anchored proteins) and splABCD (which encode secreted proteases) have been implicated in biofilm formation. To deconvolute Rsp's contribution to biofilm formation, we analyzed deletion mutants of these genes either in the wild-type or in the rsp mutant background. We found that fnbA deletion in the rsp mutant restored biofilm formation to the wild-type level, indicating that FnbA plays a major role in Rsp regulation of biofilm formation. Further studies revealed that Rsp inhibited biofilm formation at the stage of primary attachment through repressing fnbA. Rsp belongs to the AraC/XylS family of regulatory proteins. We expressed the putative Rsp DNA binding domain (RspDBD) in Escherichia coli and showed that RspDBD was able to specifically bind to a short DNA fragment containing the fnbA promoter, suggesting that Rsp represses fnbA expression by direct DNA binding

    Effects of urban living environments on mental health in adults

    Get PDF
    Urban-living individuals are exposed to many environmental factors that may combine and interact to influence mental health. While individual factors of an urban environment have been investigated in isolation, no attempt has been made to model how complex, real-life exposure to living in the city relates to brain and mental health, and how this is moderated by genetic factors. Using the data of 156,075 participants from the UK Biobank, we carried out sparse canonical correlation analyses to investigate the relationships between urban environments and psychiatric symptoms. We found an environmental profile of social deprivation, air pollution, street network and urban land-use density that was positively correlated with an affective symptom group (r = 0.22, Pperm < 0.001), mediated by brain volume differences consistent with reward processing, and moderated by genes enriched for stress response, including CRHR1, explaining 2.01% of the variance in brain volume differences. Protective factors such as greenness and generous destination accessibility were negatively correlated with an anxiety symptom group (r = 0.10, Pperm < 0.001), mediated by brain regions necessary for emotion regulation and moderated by EXD3, explaining 1.65% of the variance. The third urban environmental profile was correlated with an emotional instability symptom group (r = 0.03, Pperm < 0.001). Our findings suggest that different environmental profiles of urban living may influence specific psychiatric symptom groups through distinct neurobiological pathways
    corecore