36 research outputs found
The management of acute venous thromboembolism in clinical practice. Results from the European PREFER in VTE Registry
Venous thromboembolism (VTE) is a significant cause of morbidity and mortality in Europe. Data from real-world registries are necessary, as clinical trials do not represent the full spectrum of VTE patients seen in clinical practice. We aimed to document the epidemiology, management and outcomes of VTE using data from a large, observational database. PREFER in VTE was an international, non-interventional disease registry conducted between January 2013 and July 2015 in primary and secondary care across seven European countries. Consecutive patients with acute VTE were documented and followed up over 12 months. PREFER in VTE included 3,455 patients with a mean age of 60.8 ± 17.0 years. Overall, 53.0 % were male. The majority of patients were assessed in the hospital setting as inpatients or outpatients (78.5 %). The diagnosis was deep-vein thrombosis (DVT) in 59.5 % and pulmonary embolism (PE) in 40.5 %. The most common comorbidities were the various types of cardiovascular disease (excluding hypertension; 45.5 %), hypertension (42.3 %) and dyslipidaemia (21.1 %). Following the index VTE, a large proportion of patients received initial therapy with heparin (73.2 %), almost half received a vitamin K antagonist (48.7 %) and nearly a quarter received a DOAC (24.5 %). Almost a quarter of all presentations were for recurrent VTE, with >80 % of previous episodes having occurred more than 12 months prior to baseline. In conclusion, PREFER in VTE has provided contemporary insights into VTE patients and their real-world management, including their baseline characteristics, risk factors, disease history, symptoms and signs, initial therapy and outcomes
A Nursing Tool for the Identification of Intensive Care Unit Stressors Interpreted by Children Eight to Ten Years Old
A nursing tool was developed to obtain quantifiable data stressors as interpreted by the older child, eight to ten years of age. The tool was designed for use by a nurse researcher to elicit information in an indirect manner from the older child. The nursing tool begins with a vignette which introduces the older child to the intensive care unit setting. A review of the literature on the cognitive development, psychological development, and stressors in the intensive care unit, identified content areas which were included in the tool. The four areas of content related to the intensive care unit include: treatments and procedures, furnishings, persons in the intensive care unit, and events. The nursing tool requires approximately one hour to complete and includes guidelines for use
Genotype-by-Environment-by-Environment Interactions in the Saccharomyces cerevisiae Transcriptomic Response to Alcohols and Anaerobiosis
Next generation biofuels including longer-chain alcohols such as butanol are attractive as renewable, high-energy fuels. A barrier to microbial production of butanols is the increased toxicity compared to ethanol; however, the cellular targets and microbial defense mechanisms remain poorly understood, especially under anaerobic conditions used frequently in industry. Here we took a comparative approach to understand the response of Saccharomyces cerevisiae to 1-butanol, isobutanol, or ethanol, across three genetic backgrounds of varying tolerance in aerobic and anaerobic conditions. We find that strains have different growth properties and alcohol tolerances with and without oxygen availability, as well as unique and common responses to each of the three alcohols. Our results provide evidence for strain-by-alcohol-by-oxygen interactions that moderate how cells respond to alcohol stress
Frame Dislocation of Body Middle Rings in Endovascular Stent Tube Grafts
AbstractObjectivesto understand the cause, and propose a mechanism for frame dislocation in endovascular grafts.Materials and methodsfive tube grafts were explanted due to secondary distal leakage 15â21 months after operation. One bifurcated graft was removed during emergency operation after aortic rupture caused by secondary leakage. A second bifurcated graft was harvested from a patient with thrombotic occlusion of one limb, who died after transurethral prostatic resection. The inside of the grafts were examined endoscopically. The stent was inspected after removal of the fabric, broken ligatures were counted and examined by scanning electron microscopy. The fabric strength was tested by probe puncture.Resultswe found 17â44% of the stent ligatures of the body middle rings to be loose. The knots were intact. Degradation of the polyester textile was not observed.Conclusionscontinuous movements in the grafted aorta and blood pressure impose permanent stress to the stent frame and the polyester fabric resulting in morphological changes in the body middle ring of grafts. The clinical implications of the suture breakages are unknown although they may be related to distal secondary leakage in tube grafts
Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast.
Microbes can be metabolically engineered to produce biofuels and biochemicals, but rerouting metabolic flux toward products is a major hurdle without a systems-level understanding of how cellular flux is controlled. To understand flux rerouting, we investigated a panel of Saccharomyces cerevisiae strains with progressive improvements in anaerobic fermentation of xylose, a sugar abundant in sustainable plant biomass used for biofuel production. We combined comparative transcriptomics, proteomics, and phosphoproteomics with network analysis to understand the physiology of improved anaerobic xylose fermentation. Our results show that upstream regulatory changes produce a suite of physiological effects that collectively impact the phenotype. Evolved strains show an unusual co-activation of Protein Kinase A (PKA) and Snf1, thus combining responses seen during feast on glucose and famine on non-preferred sugars. Surprisingly, these regulatory changes were required to mount the hypoxic response when cells were grown on xylose, revealing a previously unknown connection between sugar source and anaerobic response. Network analysis identified several downstream transcription factors that play a significant, but on their own minor, role in anaerobic xylose fermentation, consistent with the combinatorial effects of small-impact changes. We also discovered that different routes of PKA activation produce distinct phenotypes: deletion of the RAS/PKA inhibitor IRA2 promotes xylose growth and metabolism, whereas deletion of PKA inhibitor BCY1 decouples growth from metabolism to enable robust fermentation without division. Comparing phosphoproteomic changes across ira2Î and bcy1Î strains implicated regulatory changes linked to xylose-dependent growth versus metabolism. Together, our results present a picture of the metabolic logic behind anaerobic xylose flux and suggest that widespread cellular remodeling, rather than individual metabolic changes, is an important goal for metabolic engineering