15 research outputs found

    The Genetic Signature of Sex-Biased Migration in Patrilocal Chimpanzees and Humans

    Get PDF
    A large body of theoretical work suggests that analyses of variation at the maternally inherited mitochondrial (mt)DNA and the paternally inherited non-recombining portion of the Y chromosome (NRY) are a potentially powerful way to reveal the differing migratory histories of men and women across human societies. However, the few empirical studies comparing mtDNA and NRY variation and known patterns of sex-biased migration have produced conflicting results. Here we review some methodological reasons for these inconsistencies, and take them into account to provide an unbiased characterization of mtDNA and NRY variation in chimpanzees, one of the few mammalian taxa where males routinely remain in and females typically disperse from their natal groups. We show that patterns of mtDNA and NRY variation are more strongly contrasting in patrilocal chimpanzees compared with patrilocal human societies. The chimpanzee data we present here thus provide a valuable comparative benchmark of the patterns of mtDNA and NRY variation to be expected in a society with extremely female-biased dispersal

    Paternity and relatedness in wild chimpanzee communities.

    No full text
    The genetic structure of three contiguous wild chimpanzee communities in West Africa was examined to determine the extent to which the community, the mixed-sex social unit of chimpanzees, represents a closed reproductive unit. An analysis of paternity for 41 offspring resulted in 34 cases of paternity assignment to an adult male belonging to the same community. Among the 14 offspring for which all potential within-community fathers have been tested, one likely case of extra-group paternity (EGP) has been identified, suggesting an incidence of EGP of 7%. This more extensive analysis contradicts a previous genetic study of the Taï chimpanzees that inferred 50% extra-group fathers. We suggest, based on direct comparison of results for 33 individuals at 1 microsatellite locus and direct comparison of paternity assignments for 11 offspring, that the error rate in the previous study was too high to produce accurate genotypes and assignments of paternity and hence caused the false inference of a high rate of EGP. Thus, the community is the primary but not exclusive unit for reproduction in wild chimpanzees, and females do not typically reproduce with outside males. Despite the inferred low level of gene flow from extra-community males, relatedness levels among the community males are not significantly higher than among community females, and the distribution of genetic relationships within the group suggests that, rather than a primarily male-bonded social structure, the group is bonded through relationships between males and females. Kinship may explain cooperative behaviors directed against other communities, but is unlikely to explain the high levels of affiliation and cooperation seen for male within-community interactions

    Inhibition of p90 ribosomal S6 kinases disrupts melanoma cell growth and immune evasion

    No full text
    Abstract Background The mitogen-activated protein kinase (MAPK) signaling pathway is frequently hyperactivated in malignant melanoma and its inhibition has proved to be an efficient treatment option for cases harboring BRAFV600 mutations (BRAFMut). However, there is still a significant need for effective targeted therapies for patients with other melanoma subgroups characterized by constitutive MAPK activation, such as tumors with NRAS or NF-1 alterations (NRASMut, NF-1LOF), as well as for patients with MAPK pathway inhibitor-resistant BRAFMut melanomas, which commonly exhibit a reactivation of this pathway. p90 ribosomal S6 kinases (RSKs) represent central effectors of MAPK signaling, regulating cell cycle progression and survival. Methods RSK activity and the functional effects of its inhibition by specific small molecule inhibitors were investigated in established melanoma cell lines and patient-derived short-term cultures from different MAPK pathway-hyperactivated genomic subgroups (NRASMut, BRAFMut, NF-1LOF). Real-time qPCR, immunoblots and flow cytometric cell surface staining were used to explore the molecular changes following RSK inhibition. The effect on melanoma cell growth was evaluated by various two- and three-dimensional in vitro assays as well as with melanoma xenograft mouse models. Co-cultures with gp100- or Melan-A-specific cytotoxic T cells were used to assess immunogenicity of melanoma cells and associated T-cell responses. Results In line with elevated activity of the MAPK/RSK signaling axis, growth and survival of not only BRAFMut but also NRASMut and NF-1LOF melanoma cells were significantly impaired by RSK inhibitors. Intriguingly, RSK inhibition was particularly effective in three-dimensional growth settings with long-term chronic drug exposure and suppressed tumor cell growth of in vivo melanoma models. Additionally, our study revealed that RSK inhibition simultaneously promoted differentiation and immunogenicity of the tumor cells leading to enhanced T-cell activation and melanoma cell killing. Conclusions Collectively, RSK inhibitors exhibited both multi-layered anti-tumor efficacy and broad applicability across different genomic melanoma subgroups. RSK inhibition may therefore represent a promising novel therapeutic strategy for malignant melanoma with hyperactivated MAPK signaling
    corecore