45 research outputs found

    Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4+ T-cell repertoire selection

    Get PDF
    Human CD4+ αβ T cells are activated via T-cell receptor recognition of peptide epitopes presented by major histocompatibility complex (MHC) class II (MHC-II). The open ends of the MHC-II binding groove allow peptide epitopes to extend beyond a central nonamer core region at both the amino- and carboxy-terminus. We have previously found that these non-bound C-terminal residues can alter T cell activation in an MHC allele-transcending fashion, although the mechanism for this effect remained unclear. Here we show that modification of the C-terminal peptide-flanking region of an influenza hemagglutinin (HA305−320) epitope can alter T-cell receptor binding affinity, T-cell activation and repertoire selection of influenza-specific CD4+ T cells expanded from peripheral blood. These data provide the first demonstration that changes in the C-terminus of the peptide-flanking region can substantially alter T-cell receptor binding affinity, and indicate a mechanism through which peptide flanking residues could influence repertoire selection

    Managing software engineers and their knowledge

    Get PDF
    This chapter begins by reviewing the history of software engineering as a profession, especially the so-called software crisis and responses to it, to help focus on what it is that software engineers do. This leads into a discussion of the areas in software engineering that are problematic as a basis for considering knowledge management issues. Some of the previous work on knowledge management in software engineering is then examined, much of it not actually going under a knowledge management title, but rather “learning” or “expertise”. The chapter goes on to consider the potential for knowledge management in software engineering and the different types of knowledge management solutions and strategies that might be adopted, and it touches on the crucial importance of cultural issues. It concludes with a list of challenges that knowledge management in software engineering needs to address

    Polyfunctional Type-1, -2, and -17 CD8+ T Cell Responses to Apoptotic Self-Antigens Correlate with the Chronic Evolution of Hepatitis C Virus Infection

    Get PDF
    Caspase-dependent cleavage of antigens associated with apoptotic cells plays a prominent role in the generation of CD8+ T cell responses in various infectious diseases. We found that the emergence of a large population of autoreactive CD8+ T effector cells specific for apoptotic T cell-associated self-epitopes exceeds the antiviral responses in patients with acute hepatitis C virus infection. Importantly, they endow mixed polyfunctional type-1, type-2 and type-17 responses and correlate with the chronic progression of infection. This evolution is related to the selection of autoreactive CD8+ T cells with higher T cell receptor avidity, whereas those with lower avidity undergo prompt contraction in patients who clear infection. These findings demonstrate a previously undescribed strict link between the emergence of high frequencies of mixed autoreactive CD8+ T cells producing a broad array of cytokines (IFN-γ, IL-17, IL-4, IL-2…) and the progression toward chronic disease in a human model of acute infection

    Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    No full text
    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack

    Surveillance-embedded genomic outbreak resolution of methicillin-susceptible Staphylococcus aureus in a neonatal intensive care unit

    No full text
    We observed an increase in methicillin-susceptible Staphylococcus aureus (MSSA) infections at a Dutch neonatal intensive care unit. Weekly neonatal MSSA carriage surveillance and cross-sectional screenings of health care workers (HCWs) were available for outbreak tracing. Traditional clustering of MSSA isolates by spa typing and Multiple-Locus Variable number tandem repeat Analysis (MLVA) suggested that nosocomial transmission had contributed to the infections. We investigated whether whole-genome sequencing (WGS) of MSSA surveillance would provide additional evidence for transmission. MSSA isolates from neonatal infections, carriage surveillance, and HCWs were subjected to WGS and bioinformatic analysis for identification and localization of high-quality single nucleotide polymorphisms, and in-depth analysis of subsets of isolates. By measuring the genetic diversity in background surveillance, we defined transmission-level relatedness and identified isolates that had been unjustly assigned to clusters based on MLVA, while spa typing was concordant but of insufficient resolution. Detailing particular subsets of isolates provided evidence that HCWs were involved in multiple outbreaks, yet it alleviated concerns about one particular HCW. The improved resolution and accuracy of genomic outbreak analyses substantially altered the view on outbreaks, along with apposite measures. Therefore, inclusion of the circulating background population has the potential to overcome current issues in genomic outbreak inference

    Persistence of EBV Antigen-Specific CD8 T Cell Clonotypes during Homeostatic Immune Reconstitution in Cancer Patients.

    Get PDF
    Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution
    corecore