328 research outputs found

    Developing a discrimination rule between breast cancer patients and controls using proteomics mass spectrometric data: A three-step approach

    Get PDF
    To discriminate between breast cancer patients and controls, we used a three-step approach to obtain our decision rule. First, we ranked the mass/charge values using random forests, because it generates importance indices that take possible interactions into account. We observed that the top ranked variables consisted of highly correlated contiguous mass/charge values, which were grouped in the second step into new variables. Finally, these newly created variables were used as predictors to find a suitable discrimination rule. In this last step, we compared three different methods, namely Classification and Regression Tree ( CART), logistic regression and penalized logistic regression. Logistic regression and penalized logistic regression performed equally well and both had a higher classification accuracy than CART. The model obtained with penalized logistic regression was chosen as we hypothesized that this model would provide a better classification accuracy in the validation set. The solution had a good performance on the training set with a classification accuracy of 86.3%, and a sensitivity and specificity of 86.8% and 85.7%, respectively

    Universality and programmability of quantum computers

    Get PDF
    Manin, Feynman, and Deutsch have viewed quantum computing as a kind of universal physical simulation procedure. Much of the writing about quantum logic circuits and quantum Turing machines has shown how these machines can simulate an arbitrary unitary transformation on a finite number of qubits. The problem of universality has been addressed most famously in a paper by Deutsch, and later by Bernstein and Vazirani as well as Kitaev and Solovay. The quantum logic circuit model, developed by Feynman and Deutsch, has been more prominent in the research literature than Deutsch's quantum Turing machines. Quantum Turing machines form a class closely related to deterministic and probabilistic Turing machines and one might hope to find a universal machine in this class. A universal machine is the basis of a notion of programmability. The extent to which universality has in fact been established by the pioneers in the field is examined and this key notion in theoretical computer science is scrutinised in quantum computing by distinguishing various connotations and concomitant results and problems.Comment: 17 pages, expands on arXiv:0705.3077v1 [quant-ph

    Emancipating Agents: Need Schrödinger’s Cat be let into the Chinese Room?

    Get PDF

    Leibniz to Lakoff: Language as instrument for Peace

    Get PDF

    Hintikka’s Alternatives

    Get PDF
    • …
    corecore