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a b s t r a c t

Manin, Feynman, and Deutsch have viewed quantum computing as a kind of universal
physical simulation procedure. Much of the writing about quantum logic circuits and
quantum Turing machines has shown how these machines can simulate an arbitrary
unitary transformation on a finite number of qubits. The problem of universality has been
addressed most famously in a paper by Deutsch, and later by Bernstein and Vazirani as
well as Kitaev and Solovay. The quantum logic circuit model, developed by Feynman and
Deutsch, has been more prominent in the research literature than Deutsch’s quantum
Turing machines. Quantum Turing machines form a class closely related to deterministic
and probabilistic Turing machines and one might hope to find a universal machine in
this class. A universal machine is the basis of a notion of programmability. The extent to
which universality has in fact been established by the pioneers in the field is examined and
this key notion in theoretical computer science is scrutinised in quantum computing by
distinguishing various connotations and concomitant results and problems.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In its attempt to cast light on the concept of programmability in quantum computing, this paper discusses two notions
of ‘‘universality’’, namely

• a universal set of generating ‘‘components’’ for a given class of machines, and
• a universal machine in a class.

In his classic introduction [1] to the theory of recursive functions, Hans Hermes devotes Chapter 2 to the ‘‘engineering’’
of Turing machines (defined below). He introduces a finite set of elementary Turing machines and then describes how to
combine them to build more complex ones and proves that the elementary machines constitute a universal generating set:
any Turing machine whatsoever is equivalent (in terms of input–output behaviour) to a Turing machine constructed by
combining elementary machines. Then, in the last chapter of the book, Hermes proves that there exists a universal Turing
machine which can simulate the input–output behaviour of any Turing machine if provided with an appropriate program.
These are instances of the two different notions of universality. Confusing and conflating the existence of a universal
generating setwith the existence of a universalmachine can engender some conceptual perplexity, fromwhich the literature
on quantum computing does not seem to escape completely. This contribution examines these issues in more detail.
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2. Classical and probabilistic Turing machines

By the beginning of the twentieth century mathematicians had become quite interested in establishing a formal model
of computability. In 1936 Alan Turing described an abstract device, now called a Turing machine, which follows a simple,
finite set of rules in a predictable fashion to transform finite strings (input) into finite strings (output, where defined). The
Turing machine (TM) can be imagined to be a small device running on a two-way infinite tape with discrete cells, each cell
containing only the symbol 0 or 1 or a blank. The TM has a finite set of possible internal states and a movable head that can
read the contents of the cell of the tape immediately under it. The head may also, at each step, write a symbol to the cell
over which it finds itself. There are two special internal states: an initial state q0 and a halting state qH .

A TM has a finite list of instructions, or transition rules, describing its operation. There is at most one transition rule for
each combination of cell content (under the head) and internal state. If the internal state is qi and the head is over a cell
with content Sj then the machine looks for a rule corresponding to (qi, Sj). If no rule is found, the machine enters the halting
state immediately. If a rule corresponding to (qi, Sj) is found, it will tell the machine what to write to the cell under the
head, whether to move one cell left or right or to stay put and which internal state to enter. There is no transition rule
corresponding to the halting state. Sometimes we refer to the entire collection of individual rules for all the different (qi, Sj)
as the transition rule of the machine.

A computation consists of starting the TM with the head over the first non-blank cell (which we may label position 0 on
the tape) from the left of the tape (it is assumed that there is nothing but some finite input on the tape) and the machine in
internal state q0. Now the transition rules are simply applied until the machine enters the halting state qH , at which point
the content of the tape will be the output of the computation. If, for some input, the machine never halts then the output
corresponding to that input is simply undefined. It is clear how every TM defines a (possibly, partial) function f : N0 → N0
from the set of counting numbers, coded in binary, to itself.

Turingmachines are the canonicalmodels of computing devices. No deterministic device, operating by finite (but possibly
unbounded) means has been shown to be able to compute functions not computable by a Turing machine. In fact, one may
view one’s desktop computer as a Turing machine with a finite tape.

A probabilistic Turing machine (PTM) is identical to an ordinary Turing machine except for the fact that at each machine
configuration

(
qi, Sj

)
there is a finite set of transition rules (eachwith an associated probability) that apply and that a random

choice determines which rule to apply. We fix some threshold probability greater than even odds (say, 75%) and say that a
specific PTM computes f (x) on input x if and only if it halts with f (x) as output with probability greater than 75%.

3. Quantum Turing machines (QTMs)

A natural model for quantum computation is based on the classical Turing machine. The quantum Turing machine (QTM)
was first1 described by David Deutsch [3]. The basic idea is quite simple, a QTM being roughly a probabilistic Turingmachine
(PTM) with complex transition amplitudes (the squared moduli of which add up to one at each application) instead of real
probabilities. A small number of quantum algorithms have been discovered but it has recently been shown that for at
least one – Deutsch’s algorithm – the efficiency of the quantum algorithm can be duplicated classically [4]. Without loss of
generality everything can be assumed to be coded in binary, so that each position on the tape of the QTM will correspond
to a single qubit (quantum bit). A unit of quantum information, the qubit is a two level quantummechanical system, whose
state is described by a linear superposition of two basis quantum states, often labelled |0〉 and |1〉. The actual (quantum)
state space of the machine will be a direct sum of n-qubit spaces (where n is an indication of howmuch tape has been used,
each n-qubit space being the n-fold tensor of the single qubit space). The direct sum is, however, not a complete inner-
product space and therefore – by the postulates of quantum mechanics – not a valid state space. However, the underlying
Hilbert space can be taken to be the completion of the direct sum and a unitary operator U on the direct sum (see [5]) can
be extended to a unitary operator Û on the Hilbert space. This completed space and operator will correspond to the physical
system associated with the QTM, thereby taking care of the physicality of the QTM.

3.1. Operation of a QTM

In the following the classical machine is a machine with a two-way infinite tape, starting over position 0 on the tape as
described above, that we use as a kind of template for the quantum Turing machine. The corresponding quantum Turing
machine (QTM) might work as follows (based on the Deutsch description [3], Ozawa [6], Bernstein and Vazirani [5]).

I. The quantum state space of the machine is spanned by a basis (here called the computational basis) consisting of states

|h〉|qC 〉|TC 〉|xC 〉

where |h〉 is the halt qubit, h ∈ {0, 1} and (qC , TC , xC ) is a configuration of the corresponding classical machine, where
xC denotes the position of the head, qC the internal state of the machine and TC the non-blank content of the tape.

1 Paul Benioff had related a similar idea somewhat earlier [2] but primarily in connection with presenting a possible physical basis for reversible
computing.
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II. Special initial and terminal internal states have been identified (corresponding to the initial state and halting state of the
classical machine).

III. The single transition rule is now a unitary operator U which, in each step, maps each basic |h〉|q〉|T 〉|x〉 to a superposition
of only finitely many |h′

〉|q′
〉|T ′

〉|x′
〉, where

(a) the rule is identical for |h〉|q〉|T1〉|x〉 and |h〉|q〉|T2〉|y〉when T1 in position x and T2 in position y have the same content,
i.e. the rule depends only on the content of the tape under the head and the internal state q and not on the position
of the head or on the content of the rest of the tape;

(b) T ′ and T differ at most in position x;
(c) |x′

− x| ≤ 1 (depending on whether the corresponding classical machine moves one position to the left, to the right,
or not at all);

(d) h′
= 1 if and only if q′ is the halting state of the classical machine; and

(e) T ′
= T , q′

= q and h′
= hwhenever h = 1.

Finitely many subrules

|h〉|q〉|T 〉|x〉 7−→

n∑
i=1

ci|hi〉|qi〉|Ti〉|xi〉 (1)

will determine U as there are, by the stipulations above, only finitely many possible – given that the alphabet of the tape
(binary in our case) and the number of internal states are both finite. Note that the transitional rule (‘‘program’’) will
have a finite specification only if the transition amplitudes in the superposition of the |h′

〉|q′
〉|T ′

〉|x′
〉 are all computable

complex numbers, which we will of course assume to be the case throughout. The transition rule can also, obviously, be
extended (linearly) to finite superpositions of |h〉|q〉|T 〉|x〉.

IV. The machine is started with a finite superposition of inputs

|0〉|q0〉|T 〉|x〉.

Because of the form that the transition rule is allowed to take (and the fact that there are only finitely many internal
machine states) the machine will be in the superposition of only finitely many basic states |h〉|q〉|T 〉|x〉 at any step during
the entire run2 of computation.

The description of the machine given here differs from a classical reversible Turing machine in two obvious respects.

(a) Transition rules are allowed to map a state of the machine to the superposition of several states. The crucial distinction
with classical probabilistic machines is that the QTM goes to a quantum superposition of states whereas the classical
PTM can be seen as either going to a classical probability distribution over states or to a specific state with some classical
probability. Quantum computing, of course, uses superposition in an essential way3 – as in the algorithms of Shor or
Grover.

(b) The input is allowed to be a superposition of a finite number of ‘‘classical’’ inputs.

It is not immediately obvious why a finite collection of specifications of the form (1) should necessarily define a unitary U ,
however, just as it might not be apparent why a finite collection of rules

|h〉|q〉|T 〉|x〉 7−→ |h′
〉|q′

〉|T ′
〉|x′

〉

for a ‘‘classical’’ machine would necessarily specify a reversible machine. Unitarity is, of course, a precondition for the
quantum device to be feasible.

We conjecture that the specification of what QTMs are, is at least consistent, that such beasties exist mathematically. Let
the underlying classical template be a reversible TM, which, after reaching its halting state, keeps moving its head stepwise
in one direction without ever changing anything on its tape. (Note that III.(e) does not stipulate that x′

= x whenever
h = 1; to be reversible, something must change at every step.) The corresponding QTM is now constructed by linearly
generating its U according to the corresponding transition rules of the simple form above – with no superpositions. Then
this U is determined by a permutation of the computational basis of the QTM, and hence is unitary. Should the rules involve
superpositions (as happens in all interesting cases), a proof of the unitarity of the induced U is called for.

3.2. Time evolution of the QTM and halting

IfU is the operator that describes one application of the transition rule (i.e. one step in the operation) of themachine, then
the evolution of an unobservedmachine (where not even the halt bit is measured) for n steps is simply described by V = Un.

2 Amore hazy concept than for classical Turingmachines, as a QTM only really stopswhen one has observed the halt qubit and the content of the tape, so
one may think of the transition rule being applied ad infinitum, step-by-step, unless the operator (physically, classically and externally) stops the machine.

3 A very readable and accessible explanation of how and why this works can be found in [7].
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If the first measurement occurs after n1 steps, and the measurement is described by an operator J1, then the evolution of the
machine for the first n1 + j steps is described by

U jJ1Un1

which is in general no longer unitary since the operator J1 is a measurement (always in the computational basis). It is
important to note that the machine evolves unitarily only when no measurement takes place at all.

The output of the machine is on the tape as a superposition of basis states and should be read off after having measured
the content of the halt bit and finding it in the state 1. The operator may at any time measure the halt bit4 in order to
decide whether to read the tape content (and collapse the state of the machine to one of the basis states). The halt bit
is intended to give the operator of the machine an indication of when an output may be read off from the tape (and by
observation collapsing the system to an eigenstate) without interfering excessively with the computation. It seems that
Deutsch’s original idea was that there would be no entanglement at all between the halt bit and the rest of the machine, but
this cannot be guaranteed. The output of a QTM for some specific input x (whichmay be a superposition of classical inputs) is
a probability distribution Px over all possible contents of the tape at the time of observing the halt bit to have been activated.
Note that the observation of an activated halt bit may in itself be a random event, but it has been argued by Ozawa [6] and
others, that Px does not depend on the random observation events.

4. Universality and programmability in the machine model

The notion of a universal computing device in a specific class is crucial for the development of a complexity theory
and – more basically – establishes the notion of programmability. Naturally, we will start the discussion by reviewing the
well-established notions of universality in classical deterministic and probabilistic computing before moving on to examine
the concept of a ‘‘universal QTM’’ introduced by Deutsch.

4.1. Classical universality and programmability

Consider a general countable class of machines (or algorithms, procedures, programs), sayManchester machines (MMs),
that compute partial functions, i.e. functions that are not necessarily defined for all inputs (since themachinemight not halt,
for example, as in the case of a Turing machine). Since there are only countably many machine descriptions, let us assume
that each Manchester5 machine is fully described by a natural number. It should be possible to recover the full description
of the machine’s functioning from the natural number in an effective way, so it should not simply be any enumeration of
the countable set. Let Φn denote the partial function computed bymachine n and fix anMM-computable bijective function6

h : N0 × N0 → N0, assuming such a function exists.7
More specifically for the following Definition 1, think intuitively of h as an abstract ‘compiler’, which prepares the

‘program’ n and the ‘input’m in the form h(n,m), suitable as input formachine numberN to start simulating the computation
of machine number n on input m. Beyond the MM-computability of h (most likely by some special-purpose MM-like
machine, different from both machines N and n), there is the practical question of the complexity and tractability of h and
the choice of an MM-type machine to preprocess (n,m) into h(n,m) as input to N . These questions, important as they are,
are left for now; but similar questions can be asked in Section 4.3, where preprocessing of input to the ‘universal’ quantum
component of a ‘‘semi-universal hybrid device’’ is required.

Definition 1. If there exists a number N such that

ΦN (h(n,m)) = Φn(m)

which means that the functions are either equal and both defined or both undefined, for all n and m, then the machine
described by N is called a Universal Manchester Machine (UMM).

Programmability is firmly linked to the concept of universality and is, of course, a necessary condition for universality. Is it
a sufficient condition? A particular Turing machine is usually thought of as dedicated to a particular task, defined by a set
of quintuples describing the operations to be carried out in sequence. Every Turing machine has thus a finite description (of
internal states, tape entries and operation rules – which are unbounded but finitely many) which could be used as input to
another Turing machine.

4 The halt qubit, of course, until we measure it.
5 Alan Turing worked on building and programming one of the first electronic computers in the city of Manchester after the Second World War.
6 It will strike the attentive reader that h is the first (and last) function of two variables to appear here but that we have implicitly consideredManchester

machines with one counting number input only. This is illogical, but the problem can be fixed in a well-established way. Suffice it to say that one should
be able to consider hMM-computable in an obvious and logical way. One only needs one such function h and we will therefore not elaborate here.

7 If it does not, the class of machines would really be very poor. It would not make a big difference if we took, for example, h : (x, y) 7→ 2x3y instead of
an onto function but the convention that h be onto is harmless and convenient.
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A universal Turing machine, (of which there are infinitely many), can simulate all the Turing machines, and is thus
programmable for the entire class of Turing machines. If a machine is programmable for any device in its class, then
it is universal. Not all programmable computer devices are universal in any sense. In fact, one could use the term
‘‘programmable’’ in the context of, say, MMs to describe any device taking a certain non-empty set of inputs of some form
depending on (n,m), where n is the ‘‘program" and m the ‘‘data", and where the action of that device on such an input
depends not only on m but also on n. Such machines are universal (for some class, say the class of all MMs) only if they can
– through suitable choices of n – mimic the operation of any other machine in the class on any relevantm.

4.2. Probabilistic Turing machine universality

Since halting is a probabilistic notion for a QTM, the notion of universality for quantum devices should be akin to that
for probabilistic machines. For probabilistic machines, however, Definition 1 does not directly apply and it is necessary to
generalise it as follows.

Definition 2. If there exists a number N such that

ΦN (h(n,m)) = Φn(m)

which means that the functions are either equal and both defined or both undefined (if deterministic) and if not
deterministic then the values have the same distribution, for all n and m, then the machine described by N is called a
Universal Manchester Machine (UMM).

In the case, for example, of deterministic Turing machines (which are a strict subset of the probabilistic machines) the
two notions of universality coincide, of course. The main aim of this section is to discuss this (second) notion of universality
for quantum Turing machines (QTMs).

One can easily show, incidentally, that every function f which can be computed in this sense by a PTM, is also computable
by some ordinary TM in the usual sense. Nevertheless PTMs have always been of interest because probabilistic algorithms
can often be found that are quite fast by comparison to the best known classical procedure. The class of PTMs is often defined
by restricting the probabilities to 1

2 or 1 only. In this case the class can also be obtained by taking the ordinary TMs and adding
a special write instruction to write one random bit to the tape. The PTMs are often described, in this model, as ‘‘TMs with
access to a fair coin toss’’. It is easy to see how a universal machine might be described in this class: it would simply be
a universal TM equipped with the random output instruction. Such a universal PTM (UPTM) could obviously simulate any
other ‘‘coin toss’’ PTM perfectly, by which is meant that the output of the UPTM would have exactly the same distribution
as the output of a PTM for which it is executing a program.

Now,which PTMs should our UPTMbe able to simulate exactly?Well, since each PTM should have a finite description, the
UPTM need only be able to simulate a countable collection of PTMs. Let us restrict the set of PTMs to those with computable
transition probabilities. Each suchmachine is fully described by the finite set of transition rules and programs for computing
each of the associated probabilities. This description is finite – thanks to the restriction of the probabilities to computable
numbers.

Since there is no reasonableway of giving a finite description of PTMswith non-computable transition probabilities, apart
from the usual paradoxical definitions of the type ‘‘one more than the largest number which can be described in thirteen
words’’, this concludes the discussion for PTMs. Introducing arbitrary real transition probabilitiesmakes no sense as it would
immediately make any subset of the natural numbers decidable by a probabilistic machine.

4.3. A universal QTM?

Deutsch introduced a ‘‘universal quantum computer’’ (uQC, where u has not been capitalised in order to emphasise the
difference between this universality concept and the preceding) in [3]. The Deutsch uQC is in effect a QTM as in Section 3,
based on a classical UTMwith some additional (8 in [3]) operations that allow any unitary transformation on one qubit to be
approximated arbitrarily closely. Deutsch showed in the paper that for any given L, ε > 0 and quantum device U operating
on L qubits, there exists a program pL (a classical finite string of bits) for the uQC that (with input |pL〉 followed by any finite
superposition of L-qubit basic states) approximates the operation ofU on the finite superposition of L-qubit basic stateswith
accuracy at least ε (in the inner-product norm). This is not the same kind of universality that we have for probabilistic and
for deterministic Turing machines and even the concatenation scheme used by Deutsch has been questioned (for example,
by Shi [8]).

Now, if we consider the earlier (second) definition of universality, then there can be no universal machine for the simple
reason that in Deutsch’s scheme there are uncountably many (transition rules for) QTMs. For broadly the same reasons
as outlined above for PTMs, we shall restrict ourselves henceforth to QTMs with computable transition amplitudes, i.e.
transition amplitudes for which both the real and imaginary parts are computable numbers. We now fix a scheme for
encoding the QTMs and associate any machine M with the smallest8 natural number that encodes it. Note that we say

8 Two distinct natural numbers may, of course, encode physically identical machines.
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that a QTM outputs ywith probability p if the probability of ever observing the machine to be in the halt state with the tape
in state |y〉 is p. Does a universal machine for the (restricted) class of QTMs in the sense of Definition 2 exist?

Deutsch provided the rather incomplete solutionmentioned above. Bernstein and Vazirani [5] have given another partial
solution. They showed that there exists a quantum Turing machine U (they actually wrote M) such that [5]

‘‘for any well-formed9 QTM M , any ε > 0, and any T , U can simulate M with accuracy ε for T steps with slowdown
polynomial in T and 1

ε
’’.

The slowdown and the program for U both depend here on the length of the input. The full Bernstein–Vazirani result could be
summarised by the statement that

there exists a QTM U such that for each QTMM with finite description M̄ , n, ε and T there is a program P (M̄, n, ε, T )
and a function fM̄(T , n, 1

ε
) (both recursive in their inputs) such that running U on input |P (M̄, n, ε, T )〉 ⊗ |x〉 where

|x| = n for fM̄(T , n, 1
ε
) steps results – within accuracy ε – in the same distribution over observable states as running

M on input |x〉 for T steps.

The simulation is clearly only approximate. What Bernstein and Vazirani mean ‘‘with accuracy ε’’ is that if P is the probability
distribution over all observable states ofU after fM̄(T , n, 1

ε
) stepswith the given input andQ is the corresponding probability

distribution ofM after T steps then

1
2

∑
x

|P(x) − Q (x)| ≤ ε

where the summation is over all possible observable states x. Again, approximate simulation is quite different from the
universality concept for ordinary and for probabilistic Turingmachines (with computable probabilities) as in the latter cases
the universal machine’s simulation was exact. Running U for exactly fM̄(T , n, 1

ε
) steps on any input |P (M̄, n, ε, T )〉 ⊗ |x〉

will have simulated the running ofM on |x〉 for T steps. Wemay not let U run for anymore steps as the state of the machine
might then drift away from the to-be-simulated state of M after T steps. This behaviour is rather different from that of the
UTM or UPTM—where there is no need to restrict the number of steps executed!

What about the input to the machine? In general, the input to a QTM is allowed to be a (finite) superposition of basis
states of the tape but the Bernstein–Vazirani theorem quoted here applies to a single state only. This is not a problem: it is
straightforward to see that it also applies to a superposition ofm basic states (just replacing ε by 1

mε).
Now, the Bernstein–Vazirani machine U immediately suggests the following semi-universal hybrid device (SUHD). The

device takes the description M̄ of a QTM M as well as x and ε (which may be taken to be rational) as input. The machine
operates as follows.

T:= 1;
n:= |x|;
do

compute P := P (M̄, n, ε
T , T );

compute S := fM̄(T , n, T
ε
);

run U on |P〉 ⊗ |x〉 for S steps;
signal that quantum part of device may be observed;
wait a little;
reset quantum part of device;
T:=T+1;

while true;

Note that by replacing ε by ε
T we have ensured that by simply letting the SUHD run, we will not only be able to observe

the simulated behaviour of M for ever longer times, but also with ever-increasing accuracy. However, the SUHD is still not
universal for the class of QTMs in the sense of Definition 1 or Definition 2. This is true not only for the very obvious reason
that its simulation is only approximate, but for themuchmore fundamental reason that we do not knowwhether it is a QTM
itself!

The SUHD is a real hybrid device which consists of a classical Turing-typemachine and a quantum part. The classical TM-
part computes the P and S above, and |P〉 then becomes part of the input to the quantum part. Beyond the TM-computability
of P and S, we know nothing about the complexity of these computations, similar to our agnosticism about the complexity
of the ‘compiler’ function h in Section 4.1. The SUHD is – in a sense – a robot capable of operating a quantum device (which
forms part of itself) and there is no reason to think that such a robot cannot be built. The problem lies therein that the robot
only gives a signal when we might observe the quantum part of the device. It cannot know whether we have observed the
quantum part or not – otherwise the observer would become part of the device. . .

9 Meaning that the time evolution operator is unitary.
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Now, any quantum device operates reversibly. In the case of the SUHD the step ‘‘reset quantum part of device’’ is the
part which can be problematic in this regard. If the quantum part was not observed during the step ‘‘wait a little’’ then the
inverse of the evolution operator ofU can be used to effect such a reset. But, what if the observer(s) didmake an observation
of the quantum part during ‘‘wait a little’’? Now, the inverse of the evolution operator of U will not ‘‘reset quantum part
of device’’. This is really a serious problem. In an ordinary QTM the evolution of the machine continues even when the halt
bit has been observed, but for the SUHD even the observation of the halt bit (which may be in a superposed state, although
not necessarily entangled with the rest of the machine) renders the operation of the device non-reversible. This is simply
because for the ordinary QTM, the evolution operator can continue after the halt bit has been observed without perturbing
the probability distribution that has been defined to be the QTM’s output (according to Ozawa [6]) since the observation
projects one, in a certain sense, only into a specific (h = 0 or h = 1) branch of the computation. For the hybrid device it is
not that simple since the resetting step requires an undisturbed quantum part. If the quantum part has been disturbed at
T = k, the operation described above will not be able to correctly reset the quantum part of the device and will not execute
the loop faithfully for T = k+ 1. Of course, it is always possible for the operator to be instructed to restart the hybrid device
after observation, but then we will be dealing with a new kind of bio-hybrid device and not a universal machine at all. In
classical computing this would be the equivalent of the user strictly having to reboot the computer each time after looking at
the screen, i.e. there would be no autonomy of operation. Pure quantum computing devices are prevented by the No Cloning
Theorem from copying initial configurations of substems, which precludes the realisation of such a naïve hybrid operation
by a quantum device.

Conjecture 1. The SUHD derived from Bernstein and Vazirani’s U cannot be made to operate reversibly and is therefore not a
QTM.

The immediate consequence of the conjecture is that (as yet) no universal machine has been shown to exist in quantum
computing and that the notion of universal programmability has not really been established for quantum computing in the
QTMmodel.

5. Quantum gates

Quantum gates provide another (and more practical) engineering paradigm for quantum computation initiated by
Richard Feynman [9] and David Deutsch [10]. The classical analogue is a logic circuit. In principle, in the quantum gate
model, a quantum computation works as follows.

(1) The first step typically involves the preprocessing of the input data on a classical computer. For example, in the Shor
algorithm for the factoring problem we must ensure in a classical way that the input number is not a prime power.

(2) Based on these preprocessed data, we have to prepare the quantum register. This means, in the simplest case, to prepare
classical data e.g. a binary string x of length d, say, as the state |x〉 in 2d-dimensional Hilbert space. Inmost cases, however,
one would be required to prepare a superposition of states |x〉.

(3) Next we apply the quantum circuit C , which is a sequence of local quantum operators, to the input state |φ〉 and after
the calculation we get the output state U|φ〉 where U is the unitary operator corresponding to C .

(4) To read out the data we perform a von Neumann measurement in the computational basis.
(5) Finally we may have to post-process the value on a classical computer. In general we obtain a correct result with

probability less than one, which means we have to check the validity of the result with a polynomial time algorithm
and if wrong, we have to go back to step 2.

Hence, in this model, a quantum computation is a hybrid of classical and probabilistic algorithms coupled with quantum
evolutions of prepared quantum states.

Suppose V is a unitary operator acting on H⊗f . For d ≥ f , we call a unitary operator on H⊗d an instance of V if it is any
operator acting like V on a fixed f of the possible d qubits and as the identity on the remaining qubits. In order to discuss
programmability in this context, we introduce the idea of instruction sets. An instruction set G for a multiqubit of a fixed
length d is a finite set of quantum gates satisfying the following conditions.

• All gates V ∈ G are in SU(2d), that is, they are unitary operators on the 2d-dimensional Hilbert space H⊗d where H is
2-dimensional over C and each operator has determinant one.

• For each V ∈ G the inverse operation V Ď also belongs to G.
• The group generated by G is topologically dense in SU(2d). This means that for any given quantum gate U ∈ SU(2d) and

any degree of accuracy ε > 0, there exists a finite product V = V1V2 . . . Vk of instances of gates from G which is an
ε-approximation to U , that is to say, such that

||U − V1V2 . . . Vk|| < ε.

Suppose U and V are two unitary operators on the same state space with U the target unitary operator that we wish to
implement and V = V1V2 · · · Vk being the unitary operator that is actually implemented from an instruction set as above.
Let M be a positive operator valued measure (POVM) element associated with the measurement and let PU (or PV ) be the
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probability of obtaining the corresponding measurement outcome if the operation U (or V ) is performed with a starting
state |φ〉. Then it can be shown that (see [11], p. 195)

|PU − PV | = |〈φ|UĎMU|φ〉 − 〈φ|V ĎMV |φ〉| ≤ 2||U − V ||.

This inequality gives quantitative expression to the idea that when the error ||U −V || is small, the difference in probabilities
between measurement outcomes is also small.

An example of a set of universal gates is that ‘‘generated’’ by instances of T , the Toffoli gate,H , the Hadamard gate, and the
phase gates. It is ‘‘generated’’ in the following sense:We consider all unitary operators for d-multiqubitswhich is a product of
instances ofH , T , the phase gates togetherwith their inverses. Then this set G is an instruction set formultiqubits of length d.

6. Universal sets of gates: The Solovay–Kitaev theorem

The problem of quantum compilation is the following: Given an instruction set G, how can we approximate an arbitrary
quantum gate by means of a finite sequence of instructions from G in a manner which is both effective (i.e., computable in
the classical sense), and efficient as far as both the time and space complexity are concerned. The Solovay–Kitaev theorem
[12] is a truly remarkable contribution to this problem:

Theorem 1. Let G be an instruction set for SU(2d), and let a desired measure of accuracy ε > 0 be given. There is a universal
constant c such that for any U in SU(2d), there exists a finite sequence S of gates from G of length Od

(
logc(1/ε)

)
such that the

product of the sequence S is within ε of U with respect to the operator norm.

More precisely, an arbitrary unitary operator U on d qubits can be approximated to within a distance ε in the operator
norm by using O

(
d24d logc(d24d/ε)

)
instances of gates from G. This can be shown [11, pp. 199–200] to be close to optimal

in the following sense: For a given instruction set G and a measure of accuracy ε > 0, there are unitary transformations
U on d qubits which take Ω(2d log(1/ε)/ log(d)) instances of gates from G to implement an approximation V such that
||U − V || < ε.

Many authors state that this can be done in an effective and efficient manner. This must be read with some care! We
call a unitary operation recursivewith respect to the chosen measurement basis if all its matrix entries relative to this basis
are recursive complex numbers. Recall that a complex number is a recursive complex number provided both its real and
imaginary parts are recursive real numbers. A real number x is recursive if there is an algorithmic procedurewhichwith input
a natural number nwill yield a binary rational number of the form `/2n such that |x−`/2n

| < 1/2n. Suppose now that all the
matrix entries of the gates in Gwith respect to the orthonormal basis in which the measurement is performed are recursive
complex numbers, but thatU is not recursive relative to this basis. Supposewe have an effective procedure that will yield for
any given natural n descriptions of instances V1, . . . , Vk of gates from G such that ||U −V1 · · · Vk|| < 1/n. Then it is clear that
all thematrix coefficients of U with respect to themeasurement basis are recursive complex numbers – a contradiction. Our
impression is that itmay be possible to computeU effectively providedU is recursivewith respect to themeasurement basis.
Then, the time complexity of finding the sequence S of gates will depend on the complexity of determining the elements
of U and of doing the required algebraic operations. The claim is that this accuracy can be obtained using Od

(
log2.71(1/ε)

)
computational steps. As we understand matters at this stage, this is correct if the computation is relative to an oracle that
has complete information about U with respect to the measurement basis. It remains to be investigated how the recursive
complexity ofU affects this claim. It is also ambiguous to state that the approximation can be done in an efficientmanner, for
as stated above, the worst case approximation will always be at least exponential in the length of the multiqubit on which
the unitary transformations operate.

7. Conclusion

Research into quantum computation over the past 20 years has been very successful in stimulating the development
of quantum cryptography (already in industrial application), the study of quantum information and the discovery of novel
algorithms for traditionally hard and interesting problems such as prime factorisation. Onewould bewise, however, to heed
the words of Andrew Steane [13]:

The title quantum computer will remain a misnomer for any experimental device realised in the next twenty years.
It is an abuse of language to call even a pocket calculator a computer, because the word has come to be reserved for
general-purpose machines which more or less realise Turing’s concept of the universal machine. The same ought to
be true for QCs if we do not want to mislead people.

This paper has attempted to explain why certain (strong and interesting) results in quantum computation still fall short of
establishing universality (and programmability) for quantum computing. At the very least, researchers in the field should
attempt to explain how the results of Deutsch, Bernstein and Vazirani, Solovay, Kitaev and others can be used or expanded to
construct a fully programmable universal quantum device. In the worst case, one needs to prove that such a fully universal
quantum computer does not exist. We conjecture that, like the QTMs and quantum circuits, other approaches to quantum
computation which boast ‘‘universal resources’’ (e.g. measurement-based quantum computation [14]) may confront similar
conceptual problems in the quest for a universal programmable machine.
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