4,128 research outputs found
Current driven switching of magnetic layers
The switching of magnetic layers is studied under the action of a spin
current in a ferromagnetic metal/non-magnetic metal/ferromagnetic metal spin
valve. We find that the main contribution to the switching comes from the
non-equilibrium exchange interaction between the ferromagnetic layers. This
interaction defines the magnetic configuration of the layers with minimum
energy and establishes the threshold for a critical switching current.
Depending on the direction of the critical current, the interaction changes
sign and a given magnetic configuration becomes unstable. To model the time
dependence of the switching process, we derive a set of coupled Landau-Lifshitz
equations for the ferromagnetic layers. Higher order terms in the
non-equilibrium exchange coupling allow the system to evolve to its
steady-state configuration.Comment: 8 pages, 2 figure. Submitted to Phys. Rev.
Equilibria in overlapping generations models
Bibliography: pages vi-viii.Interest rates are fundamental in the explanation of equilibrium prices over time, because they provide the link between the present and the future. Capturing this dynamic feature, the overlapping generations model is particularly suitable to address the interest rate problem, as has been shown by Paul Samuelson, David Gale and Costas Azariadis. This thesis reviews their contribution to the theory of interest: with his consumption-loan model, Samuelson sets the analytical framework for subsequent research. Furthermore, he demonstrates that the optimal interest rate is unstable, implying that a competitive economy may fail to approach the social optimum. The Samuelson and classical sets of assumptions are consolidated in the intertemporal exchange model of Gale. Its equilibrium nature, however, ignores the sequential adjustment of disequilibrium interest rates to their equilibrium values. Consequently it is difficult to comment on the direction of causality involved in the interest rate determination, unless a clearing house is introduced which simultaneously resolves the starting-up, continuity and causality problems. Departing from the full certainty scenario, Azariadis analyses the existence and likelihood of self-fulfilling prophecies. It is shown that the implications of the economy's assumed Markovian structure are twofold: while facilitating the parametric treatment of the transition probabilities, it negates the question concerning the likelihood of sunspot equilibria. Within the specified framework it is impossible to explain how the economy arrives at such equilibria; it is only possible to identify the conditions that maintain (once they exist) these self-fulfilling prophecies
The state space for two qutrits has a phase space structure in its core
We investigate the state space of bipartite qutrits. For states which are
locally maximally mixed we obtain an analog of the ``magic'' tetrahedron for
bipartite qubits--a magic simplex W. This is obtained via the Weyl group which
is a kind of ``quantization'' of classical phase space. We analyze how this
simplex W is embedded in the whole state space of two qutrits and discuss
symmetries and equivalences inside the simplex W. Because we are explicitly
able to construct optimal entanglement witnesses we obtain the border between
separable and entangled states. With our method we find also the total area of
bound entangled states of the parameter subspace under intervestigation. Our
considerations can also be applied to higher dimensions.Comment: 3 figure
Coordinated optimization of visual cortical maps : 2. Numerical studies
In the juvenile brain, the synaptic architecture of the visual cortex remains in a state of flux for months after the natural onset of vision and the initial emergence of feature selectivity in visual cortical neurons. It is an attractive hypothesis that visual cortical architecture is shaped during this extended period of juvenile plasticity by the coordinated optimization of multiple visual cortical maps such as orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we introduced a class of analytically tractable coordinated optimization models and solved representative examples, in which a spatially complex organization of the OP map is induced by interactions between the maps. We found that these solutions near symmetry breaking threshold predict a highly ordered map layout. Here we examine the time course of the convergence towards attractor states and optima of these models. In particular, we determine the timescales on which map optimization takes place and how these timescales can be compared to those of visual cortical development and plasticity. We also assess whether our models exhibit biologically more realistic, spatially irregular solutions at a finite distance from threshold, when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. We show that, although maps typically undergo substantial rearrangement, no other solutions than pinwheel crystals and stripes dominate in the emerging layouts. Pinwheel crystallization takes place on a rather short timescale and can also occur for detuned wavelengths of different maps. Our numerical results thus support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the architecture of the visual cortex. We discuss several alternative scenarios that may improve the agreement between model solutions and biological observations
Marketing orientation and strategies in the Netherlands
This paper introduces a general, formal treatment of dynamic constraints, i.e., constraints on the state changes that are allowed in a given state space. Such dynamic constraints can be seen as representations of "real world" constraints in a managerial context. The notions of transition, reversible and irreversible transition, and transition relation will be introduced. The link with Kripke models (for modal logics) is also made explicit. Several (subtle) examples of dynamic constraints will be given. Some important classes of dynamic constraints in a database context will be identified, e.g. various forms of cumulativity, non-decreasing values, constraints on initial and final values, life cycles, changing life cycles, and transition and constant dependencies. Several properties of these dependencies will be treated. For instance, it turns out that functional dependencies can be considered as "degenerated" transition dependencies. Also, the distinction between primary keys and alternate keys is reexamined, from a dynamic point of view.
Coordinated optimization of visual cortical maps : 1. Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of orientation columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about a hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference. From basic symmetry assumptions we obtain a comprehensive phenomenological classification of possible inter-map coupling energies and examine representative examples. We show that each individual coupling energy leads to a different class of OP solutions with different correlations among the maps such that inferences about the optimization principle from map layout appear viable. We systematically assess whether quantitative laws resembling experimental observations can result from the coordinated optimization of orientation columns with other feature maps
A deficit of spatial remapping in constructional apraxia after right-hemisphere stroke
This Article is provided by the Brunel Open Access Publising Fund - Copyright @ 2010 Oxford University PressConstructional apraxia refers to the inability of patients to copy accurately drawings or three-dimensional constructions. It is a common disorder after right parietal stroke, often persisting after initial problems such as visuospatial neglect have resolved. However, there has been very little experimental investigation regarding mechanisms that might contribute to the syndrome. Here, we examined whether a key deficit might be failure to integrate visual information correctly from one fixation to the next. Specifically, we tested whether this deficit might concern remapping of spatial locations across saccades. Right-hemisphere stroke patients with constructional apraxia were compared to patients without constructional problems and neurologically healthy controls. Participants judged whether a pattern shifted position (spatial task) or changed in pattern (non-spatial task) across two saccades, compared to a control condition with an equivalent delay but without intervening eye movements. Patients with constructional apraxia were found to be significantly impaired in position judgements with intervening saccades, particularly when the first saccade of the sequence was to the right. The importance of these remapping deficits in constructional apraxia was confirmed through a highly significant correlation between saccade task performance and constructional impairment on standard neuropsychological tasks. A second study revealed that even single saccades to the right can impair constructional apraxia patients’ perception of location shifts. These data are consistent with the view that rightward eye movements result in loss of remembered spatial information from previous fixations, presumably due to constructional apraxia patients’ damage to the right-hemisphere regions involved in remapping locations across saccades. These findings provide the first evidence for a deficit in remapping visual information across saccades underlying right-hemisphere constructional apraxia.European Commission Marie Curie Intra-European Fellowship (011457 to C.R.) and a Wellcome Trust Senior Fellowship (to M.H.)
Determination of volatiles in volcanic rocks and minerals with a Directly Coupled Evolved Gas Analyzing System (DEGAS) -Part I: Interpretation of degassing profiles (DEGAS-profiles) of minerals and rocks on the basis of melting experiments
Volatile components in magma strongly influence many physical properties of melts and minerals. The temperature
resolved degassing analysis of volcanic crystalline and vitreous rocks gives detailed information about volatile compounds
in the melt. Aspecial high-temperature mass-spectrometry device in combination with a thermo-balance allows
a quantitative determination of different volatile species. It enables a differentiation between the primary gas
content in the magma and the gas released from decomposition of secondary alteration products. The gas release
profiles give the following indications: i) during the littoral explosions of Pahoehoe lava the content of volatiles is
not changed by interaction with air or sea water; ii) the degassing profiles of vitreous black sand verify the primary
content of volatiles in the erupted melt, only CO2 was detected; iii) the oxygen release profile gives significant indications
for oxygen undersaturation of the erupted magma; iv) remelting of black sand in air at 1450°C for 0.45 h
causes an oxygen saturation of the basaltic melt; v) remelting of black sand in argon atmosphere confirms the oxygen
undersaturation of the melt; vi) remelting of black sand-black shale mixtures affects a significant change in the
degassing profiles, especially in CO2-release. With the first investigations we can demonstrate that gas release
curves of volcanic rocks are qualified for a) detection of the primary gas content of erupted magma; b) detection of
alteration processes of the igneous glass; c) detection of contamination of the magma with adjacent rocks
- …