8 research outputs found

    What controls the stable isotope composition of precipitation in the Mekong Delta?

    No full text
    This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD) as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs) and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR) of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables delta O-18, delta H-2, and d-excess of precipitation at the station of measurement. The results indicate that (i) MLR can better explain the isotopic variation in precipitation (R-2 = 0.8) compared to single-factor linear regression (R-2 = 0.3); (ii) the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (similar to 70 %) compared to local climatic conditions (similar to 30 %); (iii) the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv) the influence of local precipitation amount and temperature is not sig-nificant during the rainy season, unlike the regional precipitation amount effect; (v) secondary fractionation processes (e.g., sub-cloud evaporation) can be identified through the d-excess and take place mainly in the dry season, either locally for delta O-18 and delta H-2, or along the air mass trajectories for d-excess. The analysis shows that regional and local factors vary in importance over the seasons and that the source regions and transport pathways, and particularly the climatic conditions along the pathways, have a large influence on the isotopic composition of rainfall. Although the general results have been reported qualitatively in previous studies (proving the validity of the approach), the proposed method provides quantitative estimates of the controlling factors, both for the whole data set and for distinct seasons. Therefore, it is argued that the approach constitutes an advancement in the statistical analysis of isotopic records in rainfall that can supplement or precede more complex studies utilizing atmospheric models. Due to its relative simplicity, the method can be easily transferred to other regions, or extended with other factors. The results illustrate that the interpretation of the isotopic composition of precipitation as a recorder of local climatic conditions, as for example performed for paleorecords of water isotopes, may not be adequate in the southern part of the Indochinese Peninsula, and likely neither in other regions affected by monsoon processes. However, the presented approach could open a pathway towards better and seasonally differentiated reconstruction of paleoclimates based on isotopic records

    Challenges in studying water fluxes within the soil-plant-atmosphere continuum: A tracer-based perspective on pathways to progress

    No full text
    Tracing and quantifying water fluxes in the hydrological cycle is crucial for understanding the current state of ecohydrological systems and their vulnerability to environmental change. Especially the interface between ecosystems and the atmosphere that is strongly mediated by plants is important to meaningfully describe ecohydrological system functioning. Many of the dynamic interactions generated by water fluxes between soil, plant and the atmosphere are not well understood, which is partly due to a lack of interdisciplinary research. This opinion paper reflects the outcome of a discussion among hydrologists, plant ecophysiologists and soil scientists on open questions and new opportunities for collaborative research on the topic “water fluxes in the soil-plant-atmosphere continuum” especially focusing on environmental and artificial tracers. We emphasize the need for a multi-scale experimental approach, where a hypothesis is tested at multiple spatial scales and under diverse environmental conditions to better describe the small-scale processes (i.e., causes) that lead to large-scale patterns of ecosystem functioning (i.e., consequences). Novel in-situ, high-frequency measurement techniques offer the opportunity to sample data at a high spatial and temporal resolution needed to understand the underlying processes. We advocate for a combination of long-term natural abundance measurements and event-based approaches. Multiple environmental and artificial tracers, such as stable isotopes, and a suite of experimental and analytical approaches should be combined to complement information gained by different methods. Virtual experiments using process-based models should be used to inform sampling campaigns and field experiments, e.g., to improve experimental designs and to simulate experimental outcomes. On the other hand, experimental data are a pre-requisite to improve our currently incomplete models. Interdisciplinary collaboration will help to overcome research gaps that overlap across different earth system science fields and help to generate a more holistic view of water fluxes between soil, plant and atmosphere in diverse ecosystems.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Water Resource

    The Hydrosphere section of the Helmholtz Alliance on Remote Sensing and Earth System Dynamics: Enhancing the understanding of hydrological processes by remote sensing

    No full text
    The Earth system comprises a multitude of processes that are intimately meshed through complex interactions. In times of accelerated global change, the understanding and quantification of these processes is of primary importance. Spaceborne remote sensing sensors are predestined to produce information products at the global scale. The Helmholtz Alliance will therefore complement the high degree of innovation in radar remote sensing technology and will establish a unique chain from satellite technology, mission operation to information extraction and integration into local, regional and global measurements and models. The overall goal of hydrosphere-related activities is to enhance the understanding of hydrological processes by satellite data
    corecore