145 research outputs found

    Inhomogeneous metallic phase upon disordering a two dimensional Mott insulator

    Full text link
    We find that isoelectronic disorder destroys the spectral gap in a Mott-Hubbard insulator in 2D leading, most unexpectedly, to a new metallic phase. This phase is spatially inhomogeneous with metallic behavior coexisting with antiferromagnetic long range order. Even though the Mott gap in the pure system is much larger than antiferromagnetic exchange, the spectral gap is destroyed locally in regions where the disorder potential is high enough to overcome the inter-electron repulsion thereby generating puddles where charge fluctuations are enhanced. With increasing disorder, these puddles expand and concomitantly the states at the Fermi energy get extended leading to a metallic phase. We discuss the implications of our results for experiments.Comment: (4 pages, 5 figures

    Myelodysplastic Syndrome and Autoimmune Disorders: Causal Relationship or Coincidence?

    Get PDF
    Myelodysplastic syndromes are heterogeneous group of clonal hematologic malignancies characterized by peripheral blood cytopenias secondary to the ineffective hematopoiesis. ADs are frequently reported in MDS, the incidence ranging from 10 to 30%, and particularly ADs are more frequently seen at CMML. ADs may prone patient to MDS, especially when immune suppressors such as azathioprine are used for the underlying AD. Both innate and adaptive immune systems, and different cytokines including interleukins, TNF-α, and C-X-C motif chemokine 10 (CXCL10) contribute in immune dysregulation of MDS. Vasculitis, seronegative rheumatoid arthritis, SLE, Behçet’s disease, RP, and AIHA are just some of the ADs occurring concomitantly with MDS. Although hematopoietic growth factors are recommended by the American Society of Clinical Oncology (ASCO), it has been recognized from several case reports that treatment of the underlying MDS may resolve the associated autoimmune disorders. The heterogeneity and complexity of pathology, clinical manifestations, response to therapy, and prognosis of MDS and its immune dysregulation make the prognosis of MDS with autoimmune diseases a matter of debate. Better understanding of the immune dysregulation of MDS in the molecular level may help to design prospective, double blind clinical trials to find the best treatment options for autoimmune disorders associated with MDS

    Supersolid Order from Disorder: Hard-Core Bosons on the Triangular Lattice

    Full text link
    We study the interplay of Mott localization, geometric frustration, and superfluidity for hard-core bosons with nearest-neighbor repulsion on the triangular lattice. For this model at half-filling, we demonstrate that superfluidity survives for arbitrarily large repulsion, and that diagonal solid order emerges in the strongly correlated regime from an order-by-disorder mechanism. This is thus an unusual example of a stable supersolid phase of hard-core lattice bosons at a commensurate filling.Comment: 4 pages, 2 figures; finite-size scaling discussion adde

    Metabolic effects of berberine on liver phosphatidate phosphohydrolase in rats fed on high lipogenic diet: An additional mechanism for the hypolipidemic effects of berberine

    Get PDF
    Objective: To evaluate the effects of berberine (BBR) on the liver phosphatidate phosphohydrolase (PAP) and plasma lipids in rats fed on high lipogenic and normal diet. Methods: Forty rats were randomly divided into 5 groups. Group I (control) received standard diet. Group II received standard diet plus 90 mg/kg BBR and Groups IV received lipogenic diet (containing sunflower oil, cholesterol and ethanol) without treatment. Groups III and V received lipogenic diet plus 90 mg/kg BBR and 30 mg/kg gemfibrozil, respectively. On Day 60 of the experiment, blood samples were collected and PAP, total cholesterol, triglyceride, low density lipoprotein cholesterol, high density lipoprotein cholesterol, very low density lipoprotein, malondialdehyde, plasma antioxidant, and liver histopathology assessments were conducted. Results: PAP, plasma triglyceride, total cholesterol, very low density lipoprotein, and malondialdehyde levels decreased significantly (P < 0.05) in Group III compared to Group IV (24 94, 36 11, 21 18, 36.86 and 19 59, respectively). The liver triglyceride and cholesterol in Groups III and V had a remarkable decrease (P < 0.001) compared with Group IV (24.94 and 49.13, respectively). There was a significant reduction (P < 0.05) in atherogenic index in Groups III compared with Group IV. Conclusions: These results clearly suggested that BBR could be effective in reducing liver PAP, lipid abnormality, liver triglyceride and lateral side effects of hyperlipidemia. © 2014 by the Asian Pacific Journal of Tropical Biomedicine

    Co-administration of trientine and flaxseed oil on oxidative stress, serum lipids and heart structure in diabetic rats

    Get PDF
    The administration of flaxseed oil or flaxseed oil plus trientine in diabetic rats reduced triglyceride, very low density lipoprotein, and total cholesterol. Furthermore, the combined treatment significantly increased superoxide dismutase activity and attenuated serum Cu2+. The results suggest that the administration of flaxseed oil plus trientine is useful in controlling serum lipid abnormalities, oxidative stress, restoring heart structure, and reducing serum Cu2+ in diabetic rats

    Three-Dimensional Optimization of Blade Lean and Sweep for an Axial Compressor to Improve the Engine Performance

    Get PDF
    Nowadays, optimization methods have been considered as a practical tool to improve the performance of turbo-machines. For this purpose, the numerical study of the aerodynamic flow of the NASA Rotor-67 axial compressor has been investigated, and the results of this three-dimensional simulation show good agreement with experimental data. Then, the blade stacking line is changed using lean and sweep for Rotor-67 to improve the compressor performance. The third-order polynomial is selected to generate the lean and sweep changes from the hub to the shroud. The compressor flow field is solved by a Reynolds averaged Navier-Stokes solver. The genetic algorithm, coupled with the artificial neural networks, is implemented to find the optimum values for blade lean and sweep. Considering the three objective functions of pressure ratio, mass flow rate, and isentropic efficiency, the optimized rotor is obtained using the optimization algorithm. Two geometries are obtained using the optimization algorithm. The results of the optimized compressor include improving the isentropic efficiency, pressure ratio, and mass flow equal to 0.57%, 0.93%, and 1.8%, respectively. After compressor optimization, the effect of the changes in the compressor performance parameters is studied on a single spool turbojet engine. The engine is modeled by analyzing the Brayton thermodynamic cycle of the assumed turbojet engine under design point operating conditions. Results show that for the best test case, the engine with the optimized rotor, the thrust, and SFC are improved by 1.86% and 0.21%, respectively
    • …
    corecore