10 research outputs found

    Correction to: "Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocyes during 36 weeks in rabbit model (Cell and Tissue Research, (2016), 364, 3, (559-572), 10.1007/s00441-015-2355-9)

    Get PDF
    In this paper, figure 1 and its associated text were erroneously identical to that of another article from our group (Mobini et al., 2016, Journal of Biomaterial Application, SAGE publications). Unfortunately, copyright permission to re-use figure 1 and its related data were not requested. The authors would like to apologize for any confusion caused in this regard. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature

    Nestin, a neuroectodermal stem cell marker, is expressed by bovine sertoli cells

    Get PDF
    Nestin, an intermediate filament protein is expressed by neuroectodermal stem cells and tumors originating from cells of neuroectodermal and mesenchymal lineages. Nestin expression is prominent in embryos and remains upregulated until 3-6 weeks after birth but is downregulated afterward. Sertoli cells are nucleated somatic cells that are spanned in the seminiferous epithelium and play a critical role in supporting and controlling germ-cell development. In this context, we employed immunocytochemical, Western blot, and Flow cytometric analyses to demonstrate nestin expression in bovine sertoli cells. Immunostaining clearly showed that setoli cells express high levels of nestin, a result which was confirmed by Western blot analysis of purified cells. Intracellular staining of sertoli cells by flow cytometry revealed that around 74 of the cells express this marker. Given the high expression of vimentin by sertoli cells, it is proposed that the expression of nestin in these cells might be required for the formation of stable vimentin/nestin intermediate filament network. In light of these findings, it seems that sertoli cells of mature bull have potentiality of proliferation. © 2010 Springer-Verlag London Limited

    Tissue Engineering and Regenerative Medicine in Iran: Current State of Research and Future Outlook

    No full text
    During two decades ago, Iran has exhibited remarkable increase in scientific publication in different aspects including tissue engineering and regenerative medicine (TERM). The field of TERM in Iran dates comes back to the early part of the 1990 and the advent of stem cell researches. Nowadays, Iran is one of the privileged countries in stem cell therapy in the Middle East. The next major milestone in TERM was application and fabrication of scaffolds for tissue engineering in the early 2000s with a focus on engineering bone and cartilage tissue. A good amount of thoughtful works has also yielded prototypes of other tissue substitutes such as nerve conduits, liver, and even heart. However, forward movement to clinical application of these products is still far from offering clinically acceptable solutions. In this study, we have presented a comprehensive review on the efforts of Iranian scientists in different issues of tissue engineering and regenerative medicine field. © 2015, Springer Science+Business Media New York

    Regulation of luteinizing hormone receptor in hippocampal neurons following different long-lasting treatments of castrated adult rats

    No full text
    218-227The aim of this study was to investigate the effects of different Luteinizing hormone (LH) and steroid hormones levels on LH receptor (LHR) expression in the hippocampal cells. Rats (24 males and 24 females) were assigned to four groups: one control and three experimental [gonadectomy (GDX), gonadectomy + gonadotropin releasing hormone analogue (GDX+GnRHa) and GDX+GnRHa+estradiol (E2) or testosterone (T)] independently for each gender. All experimental rats were gonadectomized; then GnRHa was administrated to GDX+GnRHa group, and GnRHa plus steroid hormone to GDX+GnRHa+E2 or T group in both genders for four-month. LHR mRNA expression and its protein level in hippocampal cells were measured using QRT-PCR and Western blotting. Quantification of mRNA revealed a decrease in LHR transcripts level in GDX+GnRHa group of females. A significant change was observed between GDX groups and GDX+GnRHa+E2 or T versus GDX+GnRHa group in females. High levels of LH decreased significantly the immature isoform of LHR in GDX group compared to control group in both genders, but low LH concentrations in GDX+GnRHa group induced immature LHR isoform production only in females. Therefore increased LH concentration induces production of incomplete LHR transcripts in hippocampal cells and decreases immature LHR at the protein level. This implies that LH decreases the efficiency of translation through either producing non-functional LHR molecules or preventing their translation

    Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model

    No full text
    The reconstruction capability of osteochondral (OCD) defects using silk-based scaffolds has been demonstrated in a few studies. However, improvement in the mechanical properties of natural scaffolds is still challengeable. Here, we investigate the in vivo repair capacity of OCD defects using a novel Bombyx mori silk-based composite scaffold with great mechanical properties and porosity during 36 weeks. After evaluation of the in vivo biocompatibility and degradation rate of these scaffolds, we examined the effectiveness of these fabricated scaffolds accompanied with/without autologous chondrocytes in the repair of OCD lesions of rabbit knees after 12 and 36 weeks. Moreover, the efficiency of these scaffolds was compared with fibrin glue (FG) as a natural carrier of chondrocytes using parallel clinical, histopathological and mechanical examinations. The data on subcutaneous implantation in mice showed that the designed scaffolds have a suitable in vivo degradation rate and regenerative capacity. The repair ability of chondrocyte-seeded scaffolds was typically higher than the scaffolds alone. After 36 weeks of implantation, most parts of the defects reconstructed by chondrocytes-seeded silk scaffolds (SFC) were hyaline-like cartilage. However, spontaneous healing and filling with a scaffold alone did not eventuate in typical repair. We could not find significant differences between quantitative histopathological and mechanical data of SFC and FGC. The fabricated constructs consisting of regenerated silk fiber scaffolds and chondrocytes are safe and suitable for in vivo repair of OCD defects and promising for future clinical trial studies. © 2016, Springer-Verlag Berlin Heidelberg
    corecore