6 research outputs found

    The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes

    Get PDF
    Shaikhali J, Heiber I, Seidel T, et al. The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biology. 2008;8(1):48

    The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes

    Get PDF
    The rimb1 (redox imbalanced 1) mutation was mapped to the RCD1 locus (radical- induced cell death 1; At1g32230) demonstrating that a major factor involved in redox-regulation genes for chloroplast antioxidant enzymes and protection against photooxidative stress, RIMB1, is identical to the regulator of disease response reactions and cell death, RCD1. Discovering this link let to our investigation of its regulatory mechanism. We show in yeast that RCD1 can physically interact with the transcription factor Rap2.4a which provides redox-sensitivity to nuclear expression of genes for chloroplast antioxidant enzymes. In the rimb1 (rcd1-6) mutant, a single nucleotide exchange results in a truncated RCD1 protein lacking the transcription factor binding site. Protein-protein interaction between full-length RCD1 and Rap2.4a is supported by H2O2, but not sensitive to the antioxidants dithiotreitol and ascorbate. In combination with transcript abundance analysis in Arabidopsis, it is concluded that RCD1 stabilizes the Rap2.4-dependent redox-regulation of the genes encoding chloroplast antioxidant enzymes in a widely redox-independent manner. Over the years, rcd1-mutant alleles have been described to develop symptoms like chlorosis, lesions along the leaf rims and in the mesophyll and (secondary) induction of extra- and intra-plastidic antioxidant defense mechanisms. All these rcd1 mutant characteristics were observed in rcd1-6 to succeed low activation of the chloroplast antioxidant system and glutathione biosynthesis. We conclude that RCD1 protects plant cells from running into reactive oxygen species (ROS)-triggered programs, such as cell death and activation of pathogen-responsive genes (PR genes) and extra-plastidic antioxidant enzymes, by supporting the induction of the chloroplast antioxidant system

    Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective

    No full text
    Wormuth D, Heiber I, Shaikali J, Kandlbinder A, Baier M, Dietz K-J. Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective. JOURNAL OF BIOTECHNOLOGY. 2007;129(2):229-248.Redox regulation is a central control element in cell metabolism. It is employed to adjust photosynthesis and the antioxidant defence system of leaves to the prevailing environment. During recent years progress has been made in describing the redox-dependent alterations in metabolism, the thiol/disulfide proteome, the redox-dependent and cross-talking signalling pathways and the target genes of redox regulation. Some transcription factors have been identified as proteins that perform thiol/disulfide transitions linked to the redox-regulation of specific plant promoters. In addition first mathematical models have been designed to simulate antioxidant defence and predict its response. Taken together, a profound experimental data set has been generated which allows to approach a systems biology type of understanding of antioxidant defence in photosynthesising cells in the near future. Since oxidative stress is likely to limit plant growth under stress, such a systematic understanding of antioxidant defence will help to define novel targets for breeding stress-tolerant plants. (c) 2006 Elsevier B.V. All rights reserved

    The redox imbalanced Mutants of Arabidopsis Differentiate Signaling Pathways for Redox Regulation of Chloroplast Antioxidant Enzymes

    No full text
    A network of enzymatic and nonenzymatic antioxidants protects chloroplasts from photooxidative damage. With all enzymatic components being nuclear encoded, the control of the antioxidant capacity depends on chloroplast-to-nucleus redox signaling. Using an Arabidopsis (Arabidopsis thaliana) reporter gene line expressing luciferase under control of the redox-sensitive 2-cysteine peroxiredoxin A (2CPA) promoter, six mutants with low 2CPA promoter activity were isolated, of which five mutants show limitations in redox-box regulation of the 2CPA promoter. In addition to 2CPA, the transcript levels for other chloroplast antioxidant enzymes were decreased, although a higher oxidation status of the ascorbate pool, a higher reduction state of the plastoquinone pool, and an increased oxidation status of the 2-Cys peroxiredoxin pool demonstrated photooxidative stress conditions. Greening of the mutants, chloroplast ultrastructure, steady-state photosynthesis, and the responses to the stress hormone abscisic acid were wild type like. In the rosette state, the mutants were more sensitive to low CO(2) and to hydrogen peroxide. Comparison of gene expression patterns and stress sensitivity characterizes the mutants as redox imbalanced in the regulation of nuclear-encoded chloroplast antioxidant enzymes and differentiates redox signaling cascades

    The Plant Immunity Regulating F-Box Protein CPR1 Supports Plastid Function in Absence of Pathogens

    Get PDF
    Hedtmann C, Guo W, Reifschneider E, et al. The Plant Immunity Regulating F-Box Protein CPR1 Supports Plastid Function in Absence of Pathogens. FRONTIERS IN PLANT SCIENCE. 2017;8: 1650.The redox imbalanced 6 mutant (rimb6) of Arabidopsis thaliana was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. rimb6 shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage. Mapping of the casual mutation revealed that rimb6 carries a single nucleotide polymorphism in the gene encoding CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED (PR) GENES 1, CPR1 (At4g12560), leading to a premature stop codon. CPR1 is known as a repressor of pathogen signaling and regulator of microtubule organization. Allelism of rimb6 and cprl revealed a function of CPR1 in chloroplast stress protection. Expression studies in pathogen signaling mutants demonstrated that CPR1-mediated activation of genes for photosynthesis and chloroplast antioxidant protection is, in contrast to activation of pathogen responses, regulated independently from PAD4-controlled salicylic acid (SA) accumulation. We conclude that the support of plastid function is a basic, SA-independent function of CPR1
    corecore