12 research outputs found

    On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight

    Get PDF
    For a satellite formation to maintain its intended design despite present perturbations (formation keeping), to change the formation design (reconfiguration) or to perform a rendezvous maneuver, control forces need to be generated. To do so, chemical and/or electric thrusters are currently the methods of choice. However, their utilization has detrimental effects on small satellites’ limited mass, volume and power budgets. Since the mid-80s, the potential of using differential drag as a means of propellant-less source of control for satellite formation flight is actively researched. This method consists of varying the aerodynamic drag experienced by different spacecraft, thus generating differential accelerations between them. Its main disadvantage, that its controllability is mainly limited to the in-plain relative motion, can be overcome using differential lift as a means to control the out-of-plane motion. Due to its promising benefits, a variety of studies from researchers around the world have enhanced the state-of-the-art over the past decades which results in a multitude of available literature. In this paper, an extensive literature review of the efforts which led to the current state-of-the-art of different lift and drag-based satellite formation control is presented. Based on the insights gained during the review process, key knowledge gaps that need to be addressed in the field of differential lift to enhance the current state-of-the-art are revealed and discussed. In closer detail, the interdependence between the feasibility domain/the maneuver time and increased differential lift forces achieved using advanced satellite surface materials promoting quasi-specular or specular reflection, as currently being developed in the course of the DISCOVERER project, is discussed

    Concepts and Applications of Aerodynamic Attitude and Orbital Control for Spacecraft in Very Low Earth Orbit

    Get PDF
    Spacecraft operations below 450km, namely Very Low Earth Orbit (VLEO), can offer significant advantages over traditional low Earth orbits, for example enhanced ground resolution for Earth observation, improved communications latency and link budget, or improved signal-to-noise ratio. Recently, these lower orbits have begun to be exploited as a result of technology development, particularly component miniaturisation and cost-reduction, and concerns over the increasing debris population in commercially exploited orbits. However, the high cost of orbital launch and challenges associated with atmospheric drag, causing orbital decay and eventually re-entry are still a key barrier to their wider use for large commercial and civil spacecraft. Efforts to address the impact of aerodynamic drag are being sought through the development of novel drag-compensation propulsion systems and identification of materials which can reduce aerodynamic drag by specularly reflecting the incident gas. However, the presence of aerodynamic forces can also be utilised to augment or improve spacecraft operations at these very low altitudes by providing the capability to perform coarse pointing control and trim or internal momentum management for example. This paper presents concepts for the advantageous use of spacecraft aerodynamics developed as part of DISCOVERER, a Horizon 2020 funded project with the aim to revolutionise Earth observation satellite operations in VLEO. The combination of novel spacecraft geometries and use of aerodynamic control methods are explored, demonstrating the potential for a new generation of Earth observation satellites operating at lower altitudes

    Discoverer - Making commercial satellite operations in very low earth orbit a reality

    Get PDF
    DISCOVERER is a €5.7M European Commission funded Horizon 2020 project developing technologies to enable commercially-viable sustained-operation of satellites in very low Earth orbits. Why operate closer to the Earth? For communications applications latency is significantly reduced and link budgets improved, and for remote sensing improved link budgets allow higher resolution or smaller instruments, all providing cost benefits. In addition, all applications benefit from increased launch mass to lower altitudes, whilst end-of-life removal is ensured due to the increased atmospheric drag. However, this drag must also be minimised and compensated for. One of the key technologies being developed by DISCOVERER are materials that encourage specular reflection of the residual atmosphere at these altitudes. Combined with appropriate geometric designs these can significantly reduce drag, provide usable lift for aerodynamic attitude and orbit control, and improve the collection efficiency of aerodynamic intakes for atmosphere breathing electric propulsion systems, all of which are being developed as part of DISCOVERER. The paper provides highlights from the developments to date, and the potential for a new class of aerodynamic commercial satellites operating at altitudes below the International Space Station

    Inductive Plasma Thruster (IPT) design for an Atmosphere-Breathing Electric Propulsion System (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft, therefore an efficient propulsion system is required to extend the mission lifetime. One solution is Atmosphere-Breathing Electric Propulsion (ABEP). It collects atmospheric particles to use as propellant for an electric thruster. This would minimize the requirement of limited propellant availability. The system could be applied to any planet with atmosphere, enabling new mission at these altitude ranges for continuous orbiting. Challenging is also the presence of reactive chemical species, such as atomic oxygen in Earth orbit. Such components are erosion source of (not only) propulsion system components, i.e. acceleration grids, electrodes, and discharge channels of conventional EP systems (RIT and HET). IRS is developing within the DISCOVERER project an intake and a thruster for an ABEP system. This paper deals with the design and first operation of the inductive plasma thruster (IPT) developed at IRS. The paper describes its design aided by numerical tools such as HELIC and ADAMANT. Such a device is based on RF electrodeless discharge aided by externally applied static magnetic field. The IPT is composed by a movable injector, to variate the discharge channel length, and a movable electromagnet to variate position and intensity of the magnetic field. By changing these parameters along with a novel antenna design for electric propulsion, the aim is to achieve the highest efficiency for the ionization stage by enabling the formation of helicon-based discharge. Finally, the designed IPT is presented and the feature of the birdcage antenna highlighted

    RF Helicon-based Inductive Plasma Thruster (IPT) Design for an Atmosphere-Breathing Electric Propulsion system (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft. To extend such missions lifetime, an efficient propulsion system is required. One solution is Atmosphere-Breathing Electric Propulsion (ABEP). It collects atmospheric particles to be used as propellant for an electric thruster. The system would minimize the requirement of limited propellant availability and can also be applied to any planet with atmosphere, enabling new mission at low altitude ranges for longer times. Challenging is also the presence of reactive chemical species, such as atomic oxygen in Earth orbit. Such species cause erosion of (not only) propulsion system components, i.e. acceleration grids, electrodes, and discharge channels of conventional EP systems. IRS is developing within the DISCOVERER project, an intake and a thruster for an ABEP system. The paper describes the design and implementation of the RF helicon-based inductive plasma thruster (IPT). This paper deals in particular with the design and implementation of a novel antenna called the birdcage antenna, a device well known in magnetic resonance imaging (MRI), and also lately employed for helicon-wave based plasma sources in fusion research. This is aided by the numerical tool XFdtd®. The IPT is based on RF electrodeless operation aided by an externally applied static magnetic field. The IPT is composed by an antenna, a discharge channel, a movable injector, and a solenoid. By changing the operational parameters along with the novel antenna design, the aim is to minimize losses in the RF circuit, and accelerate a quasi-neutral plasma plume. This is also to be aided by the formation of helicon waves within the plasma that are to improve the overall efficiency and achieve higher exhaust velocities. Finally, the designed IPT with a particular focus on the birdcage antenna design procedure is presented

    Discoverer - Radical redesign of earth observation satellites for sustained operation at significantly lower altitudes

    No full text
    DISCOVERER is a €5.7M, 4 1/4 year Horizon 2020 funded project which aims to radically redesign Earth observation satellites for sustained operation at significantly lower altitudes. The satellite based Earth observation/remote sensing market is one of the success stories of the space industry, having seen significant growth in size and applications in recent times. According to Euroconsult, the EO data market from commercial and government operators, such as from data distributors, is expected to double to 3billionin2025fromanestimateof3 billion in 2025 from an estimate of 1.7 billion in 2015. Yet key design parameters for the satellites which provide the data for this market have remained largely unchanged, most noticeably the orbit altitude. Operating satellites at lower altitudes allows them to be smaller, less massive, and less expensive whilst achieving the same or even better resolution and data products than current platforms. However, at reduced orbital altitude the residual atmosphere produces drag which decreases the orbital lifetime. Aerodynamic perturbations also challenge the ability of the platform to remain stable, affecting image quality. DISCOVERER intends to overcome these challenges by carrying out foundational research in the aerodynamic characterisation of materials, in atmosphere-breathing electric propulsion for drag-compensation, and in active aerodynamic control methods. A subset of the technologies developed will also be tested on an in-orbit demonstration CubeSat. In order to put these foundational developments in context, DISCOVERER will also develop advanced engineering, commercial, and economic models of Earth observation systems which include these newly identified technologies. This will allow the optimum satellite designs for return on investment to be identified. DISCOVERER will also develop roadmaps defining the on-going activities needed to commercialise these new technologies and make Earth observation platforms in these very low Earth orbits a reality

    Chapter Earth Observation Technologies: Low-End-Market Disruptive Innovation

    Get PDF
    After decades of traditional space businesses, the space paradigm is changing. New approaches to more efficient missions in terms of costs, design, and manufacturing processes are fostered. For instance, placing big constellations of micro- and nano-satellites in Low Earth Orbit and Very Low Earth Orbit (LEO and VLEO) enables the space community to obtain a huge amount of data in near real-time with an unprecedented temporal resolution. Beyond technology innovations, other drivers promote innovation in the space sector like the increasing demand for Earth Observation (EO) data by the commercial sector. Perez et al. stated that the EO industry is the second market in terms of operative satellites (661 units), micro- and nano-satellites being the higher share of them (61%). Technological and market drivers encourage the emergence of new start-ups in the space environment like Skybox, OneWeb, Telesat, Planet, and OpenCosmos, among others, with novel business models that change the accessibility, affordability, ownership, and commercialization of space products and services. This chapter shows some results of the H2020 DISCOVERER (DISruptive teChnOlogies for VERy low Earth oRbit platforms) Project and focuses on understanding how micro- and nano-satellites have been disrupting the EO market in front of traditional platforms
    corecore