542 research outputs found

    The Einstein static universe with torsion and the sign problem of the cosmological constant

    Full text link
    In the field equations of Einstein-Cartan theory with cosmological constant a static spherically symmetric perfect fluid with spin density satisfying the Weyssenhoff restriction is considered. This serves as a rough model of space filled with (fermionic) dark matter. From this the Einstein static universe with constant torsion is constructed, generalising the Einstein Cosmos to Einstein-Cartan theory. The interplay between torsion and the cosmological constant is discussed. A possible way out of the cosmological constant's sign problem is suggested.Comment: 8 pages, LaTeX; minor layout changes, typos corrected, one new equation, new reference [5], completed reference [13], two references adde

    Axial Torsion-Dirac spin Effect in Rotating Frame with Relativistic Factor

    Full text link
    In the framework of spacetime with torsion and without curvature, the Dirac particle spin precession in the rotational system is studied. We write out the equivalent tetrad of rotating frame, in the polar coordinate system, through considering the relativistic factor, and the resultant equivalent metric is a flat Minkowski one. The obtained rotation-spin coupling formula can be applied to the high speed rotating case, which is consistent with the expectation.Comment: 6 page

    Autoparallels From a New Action Principle

    Full text link
    We present a simpler and more powerful version of the recently-discovered action principle for the motion of a spinless point particle in spacetimes with curvature and torsion. The surprising feature of the new principle is that an action involving only the metric can produce an equation of motion with a torsion force, thus changing geodesics to autoparallels. This additional torsion force arises from a noncommutativity of variations with parameter derivatives of the paths due to the closure failure of parallelograms in the presence of torsionComment: Paper in src. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Read paper directly with Netscape under http://www.physik.fu-berlin.de/~kleinert/kleiner_re243/preprint.htm

    A formal framework for a nonlocal generalization of Einstein's theory of gravitation

    Get PDF
    The analogy between electrodynamics and the translational gauge theory of gravity is employed in this paper to develop an ansatz for a nonlocal generalization of Einstein's theory of gravitation. Working in the linear approximation, we show that the resulting nonlocal theory is equivalent to general relativity with "dark matter". The nature of the predicted "dark matter", which is the manifestation of the nonlocal character of gravity in our model, is briefly discussed. It is demonstrated that this approach can provide a basis for the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.Comment: 13 pages RevTex, no figures; v2: minor corrections, reference added, matches published versio

    Strings in gravity with torsion

    Get PDF
    A theory of gravitation in 4D is presented with strings used in the material action in U4U_4 spacetime. It is shown that the string naturally gives rise to torsion. It is also shown that the equation of motion a string follows from the Bianchi identity, gives the identical result as the Noether conservation laws, and follows a geodesic only in the lowest order approximation. In addition, the conservation laws show that strings naturally have spin, which arises not from their motion but from their one dimensional structure.Comment: 16 page

    A teleparallel model for the neutrino

    Full text link
    The main result of the paper is a new representation for the Weyl Lagrangian (massless Dirac Lagrangian). As the dynamical variable we use the coframe, i.e. an orthonormal tetrad of covector fields. We write down a simple Lagrangian - wedge product of axial torsion with a lightlike element of the coframe - and show that variation of the resulting action with respect to the coframe produces the Weyl equation. The advantage of our approach is that it does not require the use of spinors, Pauli matrices or covariant differentiation. The only geometric concepts we use are those of a metric, differential form, wedge product and exterior derivative. Our result assigns a variational meaning to the tetrad representation of the Weyl equation suggested by J.B.Griffiths and R.A.Newing.Comment: 4 pages, REVTe

    Self-Dual Action for Fermionic Fields and Gravitation

    Get PDF
    This paper studies the self-dual Einstein-Dirac theory. A generalization is obtained of the Jacobson-Smolin proof of the equivalence between the self-dual and Palatini purely gravitational actions. Hence one proves equivalence of self-dual Einstein-Dirac theory to the Einstein-Cartan-Sciama-Kibble-Dirac theory. The Bianchi symmetry of the curvature, core of the proof, now contains a non-vanishing torsion. Thus, in the self-dual framework, the extra terms entering the equations of motion with respect to the standard Einstein-Dirac field equations, are neatly associated with torsion.Comment: 13 pages, plain-tex, recently appearing in Nuovo Cimento B, volume 109, pages 973-982, September 199

    Non-minimal coupling for the gravitational and electromagnetic fields: A general system of equations

    Full text link
    We establish a new self-consistent system of equations for the gravitational and electromagnetic fields. The procedure is based on a non-minimal non-linear extension of the standard Einstein-Hilbert-Maxwell action. General properties of a three-parameter family of non-minimal linear models are discussed. In addition, we show explicitly, that a static spherically symmetric charged object can be described by a non-minimal model, second order in the derivatives of the metric, when the susceptibility tensor is proportional to the double-dual Riemann tensorComment: 15 page

    Non-minimal Einstein-Yang-Mills-Higgs theory: Associated, color and color-acoustic metrics for the Wu-Yang monopole model

    Full text link
    We discuss a non-minimal Einstein-Yang-Mills-Higgs model with uniaxial anisotropy in the group space associated with the Higgs field. We apply this theory to the problem of propagation of color and color-acoustic waves in the gravitational background related to the non-minimal regular Wu-Yang monopole.Comment: 14 pages, no figure
    • …
    corecore