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Summary. - This paper studies the self-dual Einstein-Dirac theory. A generalization

is obtained of the Jacobson-Smolin proof of the equivalence between the self-dual and

Palatini purely gravitational actions. Hence one proves equivalence of self-dual Einstein-

Dirac theory to the Einstein-Cartan-Sciama-Kibble-Dirac theory. The Bianchi symmetry

of the curvature, core of the proof, now contains a non-vanishing torsion. Thus, in the

self-dual framework, the \extra" terms entering the equations of motion with respect to

the standard Einstein-Dirac �eld equations, are neatly associated with torsion.
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SELF-DUAL ACTION FOR FERMIONIC FIELDS AND GRAVITATION

1. - Introduction.

Over the last few years, many e�orts have been produced in the literature to provide a

new mathematical framework for the analysis of canonical gravity (e.g. [1-2] and references

therein). Thus, instead of the standard geometrodynamical variables, one now deals with

a new set of variables involving soldering forms and connections. Remarkably, in terms

of these geometrical objects proposed by Ashtekar [1], the constraints of general relativity

take a polynomial form, and this has motivated the introduction of yet new (loop) variables

to solve the quantum version of the constraint equations [1].

So far, any testable property of gravitation involves matter, and, in fact, matter

could help to come to terms with the issue of de�ning physical observables and time in

quantum gravity [3]. Hence, coupling matter �elds to gravitation becomes of primary

interest. Spin-1
2
�elds coupled to gravity within the framework of Ashtekar's variables

were studied in [4] and [5] (the latter included, besides, scalar and Yang-Mills �elds).

Since the gravitational part of the action using these variables is �rst-order, it is natural to

consider a gravitational connection admitting torsion. There are several kinds of matter

which can support a non-vanishing torsion when coupled to gravity [5-6]. Attention is here

focused on the spin-1
2
Dirac �eld minimally coupled to gravity. A key question is whether

the simplifying Ashtekar form of the theory contains the whole information of the standard

well-known theories, at the classical level. In the pure-gravity case, Jacobson and Smolin

[2] showed that the Palatini action

SP [e; !] =

Z
d4x e eaâebb̂R

abâb̂
(!) ; (1:1)

with e�1 the determinant of the tetrad eaâ, a; b world indices and â; b̂ frame indices, can

be recovered from the self-dual action

SSD[e;
+!] =

Z
d4x e eaâebb̂R

abâb̂
(+!) ; (1:2)
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SELF-DUAL ACTION FOR FERMIONIC FIELDS AND GRAVITATION

with +! := 1
2
(! � i � !) the self-dual (on frame indices) part of !. This follows on

substituting the equation of motion �SSD=�
+! = 0 in (1.2) [2]. That is to say

SSD[e;
+!(e)] =

1

2
SP [e; !(e)] �

i

4

Z
d4x e eaâ� ĉd̂ê

â R
aĉd̂ê

(!(e)) : (1:3)

Thus, by virtue of the Bianchi symmetry of the curvature for vanishing torsion, R
a[ĉd̂ê]

= 0,

the second term in (1.3) vanishes.

Our work aims to complement the results of [4-5], on spin- 1
2
�elds, in two respects:

(i) The equivalence (analogue of (1.3)) is explicitly given for the ECSKD (Einstein-Cartan-

Sciama-Kibble-Dirac) [6-7] and the sd-ED (self-dual Einstein-Dirac) actions [4-5].

(ii) The origin of some extra terms in the equations of motion derived from the self-dual

action [5], w.r.t. standard Einstein-Dirac ones [8], is traced back to the non-vanishing

torsion. A result considered previously, in a di�erent framework, in the literature [9].

Moreover, our proof of the equivalence (i) is necessarily a generalization of that of

Jacobson and Smolin [2] since, for non-vanishing torsion, Ra[cde] 6= 0. Nevertheless, the

Bianchi symmetry of the curvature including torsion already exists [10] and we make use

of it below.

Sect. 2 establishes the equivalence between the sd-ED and ECSKD actions. Sect. 3

studies the �eld equations for both theories. Concluding remarks are presented in sect. 4.

2. - ECSKD theory and self-dual Einstein-Dirac theory.

In coupling fermionic �elds to gravity the introduction of orthonormal tetrads is nat-

ural because spinors are de�ned w.r.t. orthonormal frames [10]. Furthermore, whenever

tetrads are adopted, connections also enter the description of gravity. In building up an

action from which to obtain the equations of motion, one has the possibility of consid-

ering tetrads and connections as independent �elds or not. If they are not one gets the

Einstein-Dirac (second-order) action. Instead, by taking them as independent, one gets

the ECSKD (�rst-order) action. The corresponding variational problems di�er on what

should be �xed at the boundary. One �nds it is necessary to add boundary terms to get a

3



SELF-DUAL ACTION FOR FERMIONIC FIELDS AND GRAVITATION

well-posed problem only in the second-order case [11]. In the �rst-order case, on the other

hand, one is left with an equation of motion associating a non-vanishing torsion to the

connection [6-7].

In a four-dimensional Lorentzian space-time, a massive Dirac �eld is represented by

the spinor �elds
�
�A; �A

�
, say, jointly with their complex conjugates, hereafter denoted by

overbars. Thus, using two-component spinor notation, the corresponding action functional

for ECSKD theory is

SECSKD =

Z
M

d4x
n
�
h
�aMA0

�bAA0R A
abM [+!] + �aAM

0

�bAA0R
A0

abM 0 [�!]
i

�
p
2 � �aAA0

h
�A

0 �ra�
A
�
�
�
ra�

A
�
�A

0

i

+
p
2 � �aAA0

h�
ra�

A0

�
�A � �A

�
ra�

A0

�i

�2im�
h
�A�

A � �A
0

�A0

io
; (2:1)

where � � det(� AA0

a ) and � AA0

a is the soldering form (i.e. the two-spinor version of the

tetrad in curved space-time). Note that the connection, here splitted into self-dual and

anti-self-dual parts, develops a torsion contribution supported by the fermionic �elds, since

we use a �rst-order formalism with connection and soldering forms taken to be independent

�elds instead of adopting a priori the relation between them [8].

By contrast, the authors of [5] studied the coupling of fermions to gravity in terms of

an action containing the self-dual part of a connection only, disregarding the anti-self-dual

part. They assumed, though, this connection to be torsion-free. In this paper the analysis

is carried out by extending the connection to admit torsion. This simpli�es the proof of

equivalence between sd-ED and ECSKD, as shown below, and makes it easier to interpret

the corresponding equations of motion in section 3. Let the self-dual action [5] be

SSD =

Z
M

d4x
n
�� �aMA0

�bJA0 FabMJ

�
p
2 � �aAA0

h
�A

0 �Da�A�� �
Da�A

�
�A

0

i

�im�
h
�A�

A � �A
0

�A0

io
; (2:2)
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where FabMN is the curvature of the connection D de�ned at this stage to act only on

unprimed spinor indices. Clearly, (2.2) is obtained from (2.1) by taking only the contri-

bution of the self-dual piece of the connection, +! and half of the mass term. The name

self-dual hence accounts for this. Thus, (2.2) is manifestly not real. Nevertheless, it will be

shown below it reproduces (2.1) modulo the equations of motion for D and via the Bianchi

symmetry of the curvature for a \metric-compatible" connection having torsion, so that

no spurious equations of motion are picked up.

The goal here is to determine D dynamically. The variation of (2.2) with respect to

D can be carried out by introducing the auxiliary forms Q M
a N and P c

ab so as to de�ne

D with respect to r, the connection compatible with the soldering form, i.e. such that

ra�
AA0

b = 0; and having associated a non-vanishing torsion T c
ab

2r[arb]f � T c
ab rcf ; f a zero� form: (2:3)

Namely,

Da�Ab = ra�
A
b +Q A

a B �Bb + P c
ab �

A
c ; (2:4)

with associated torsion T c
ab

2D[aDb]f � T c
ab rcf ; f a zero� form; (2:5)

T c
ab � T c

ab � 2P c
[ab]: (2:6)

By requiring the annihilation of the symplectic form �AB one gets a restriction on QaAB

above:

Da�AB = ra�AB = 0 ) QaAB = Qa(AB) (trace � free): (2:7)

Concerning the action on space-time indices, and thus P c
ab, it is known that to control

both metricity condition and torsion it is necessary to include kinetic terms for them in

the corresponding action [12-13]; otherwise one should impose either of them and get the

other as an equation of motion [12-13]. We follow the latter possibility by imposing

P c
ab = 0: (2:8)

5
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This amounts to specify that the torsion of r, T c
ab , is exactly that of D, T c

ab (cf. (2.6)),

to be determined dynamically. Also, from (2.4), the action on space-time indices of both

D and r is identi�ed.

VaryingD is equivalent to varyingQ so the action (2.2) should be re-expressed in terms

of r; QaMN and T c
ab . The curvatures, FabMN and RabMN of D and r (on unprimed

indices), respectively, are such that [10]

FabMN = RabMN � 2r[aQb]MN + 2Q P
[aM Qb]PN + T c

ab QcMN : (2:9)

On inserting (2.9) into (2.2), an integration by parts is necessary to deal with ther[aQb]MN

term. This gives a total divergence and a term containing the derivative of products of

soldering formsZ
M

d4x
n
�2� �aMA0

�bNA0r[aQb]MN

o

=

Z
M

d4x
n
�2ra

h
� �[aMA0

�
b]N

A0 QbMN

i
+ 2

h
ra

�
� �[aMA0

�
b]N

A0

�i
QbMN

o

= �2
Z
@M

dSa �
[aMA0

�
b]N

A0 QbMN � 2

Z
M

d4x T m
am � �[aMA0

�
b]N

A0 QbMN : (2:10)

The second term on the second line above drops by virtue of the metricity condition,

whereas the total divergence turns into a sum of a boundary and a volume term, the latter

containing torsion.

Using the above results in varying (2.2) w.r.t. QgMN yields the equation

�[a(MA0

�
b]N)

A0

�
2T m

am �
g

b � T
g

ab

�
+ 4�[g(MA0

�
a]

AA0 Q
N)A
a + i�

g(M

A0 k
N)A0

= 0: (2:11)

Here [a(MA0 b]N) means antisymmetrization in a; b and symmetrization in M;N , and

similarly for the other terms. kAA
0

and km are de�ned by

kAA
0 � �i

p
2
�
�A

0

�A � �A�A
0

�
; (2:12a)

km � �mAA0 kAA
0

: (2:12b)
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One readily solves (2.11) for QaMN pointing out that i�
g(M

A0 k
N)A0

= i�
g(M

A0 �
N)

R kRA
0

,

whose r.h.s., in turn, obeys the identity

2i�
g(M

A0 �
N)

R = �p(MB0

�
qN)

A0 �
m
RB0 � g

pqm : (2:13)

Note that there is an implicit antisymmetrization in p; q on the r.h.s. of this identity

owed to the contraction with the volume four-form. It is possible now to factor out the

soldering-form factors in (2.11). This leads to

�pRA
0

�
qS

A0

n�
2T m

[pm �
g

q]
� T g

pq

�
�

(M

R �
N)

S

+4�SA�
g

[p
Q

A(N

q]
�
M)

R +
1

2
� g
pqm km�

(M

R �
N)

S

�
= 0: (2:14)

Assuming �aAB
0

is non-degenerate enables one to set to zero the factor in braces. Tracing

of such a factor over R;M then yields

� N
S

�
2T m

[pm �
g

q]
� T g

pq

�
� 4Q N

[qS �
g

p]
+

1

2
� g
pqm km � N

S = 0: (2:15)

Since Q is traceless, taking the traces over S;N and q; g, one �nds

T m
am = 0; (2:16)

so that torsion takes the value

T g
pq =

1

2
� g
mpq km: (2:17)

Moreover, on inserting this value of torsion in (2.15) one �nds

QaSN = 0: (2:18)

Hence, according to (2.9), D is the self-dual part of the connectionr, and the corresponding
torsion is (2.17) by virtue of (2.6) and (2.8).

Reproducing (2.1) from (2.2) is easy at this stage. Recall that the Bianchi symmetry

of the curvature of a connection r having torsion T (see e.g. [10])

R d
[abc] � T e

[ab T d
c]e �r[aT

d
bc] = 0; (2:19)

7
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where antisymmetrization is understood on all three indices a; b; c, can be related to the

self-dual Riemann tensor [1]

+R d
abc =

1

2

�
�mc �

d
n �

i

2
� dmc n

�
R n
abm = R B

abA � AM 0

c �dBM 0 : (2:20)

Such a relation is as follows. The self-dual scalar curvature providing the total pure-gravity

contribution to the self-dual action can be written as

+R � � b
d gac +R d

abc =
1

2
R� i

4
�abmn R

n
abm : (2:21)

The second term of the last equality can be obtained by means of the Bianchi symmetry

(2.19) and of the torsion (2.17) as

� abc
d R d

abc = � abc
d r[aT

d
bc] = 3rak

a; (2:22)

since the term quadratic in torsion drops out in view of the form of the torsion (2.17).

Finally, one obtains

+R =
1

2
R+

3i

4
rak

a: (2:23)

Correspondingly, the terms containing derivatives of the fermionic �elds in the self-dual

action (2.2) can be re-written in terms of r and km as follows:

�
p
2 � �aAA0

h
�A

0 �Da�A�� �
Da�A

�
�A

0

i
= � �p

2
�aAA0

h
�A

0 �ra�
A
�
�
�
ra�

A
�
�A

0

i

+
�p
2
�aAA0

h�
ra�

A0

�
�A � �A

�
ra�

A0

�i

� i

2
�rak

a: (2:24)

In the light of (2.23)-(2.24) we have shown that the ECSK-Dirac action (2.1) and the

self-dual action (2.2) are equivalent modulo total divergences and the equation of motion

for D (i.e. D is the self-dual part of r). Note that the mass terms in the actions di�er

by a factor of 2. Because of the non-vanishing torsion of r these divergences give, apart

from the boundary terms, volume terms involving the trace of the torsion. However, for

8
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the Einstein-Dirac system, torsion is traceless (see (2.16)) and hence we get, indeed, a

complete dynamical equivalence. Explicitly,

SSD

h
+!(�; T ); �; �; �

i
=

1

2
SECSKD

h
!(�; T ); �; �; �

i
+

i

4

Z
@M

dSaka; (2:25)

+!(�; T ) being the self-dual part of the connection !(�; T ); the arguments, soldering form

and torsion, indicating their equations of motion (cf. (2.4), (2.8) and (2.18)), have been

used. For real general relativity, it is then evident that, although SSD is not real, its

imaginary part is a boundary term. This is a non-trivial generalization to spin- 1
2
�elds

coupled to gravity of the results obtained in [2] for pure gravity (cf. (1.3)).

3. - Field equations.

The form of the action (2.2) makes it easy to get the equations of motion for the

remaining �elds. By varying with respect to �A; �A
0

; �A; �A
0

and using e�aAA0 � � �aAA0 ,

the equations of motion for the Dirac �eld are

e�aAA0Da�A =
imp
2
� �A0 Da

�e�aAA0�
A0

�
=

imp
2
� �A; (3:1a)

Da
�e�aAA0�

A0

�
=

imp
2
� �A e�aAA0Da�A =

imp
2
� �A0: (3:1b)

Note that D does not act on primed indices (hence its compatibility with the soldering

form is unde�ned) but one needs to know its action on space-time indices, whereas in the

pure-gravity case it is independent of its extension to act on space-time indices because

of the torsion-free condition [1]. Here, however, it develops a non-vanishing torsion. This

problem is automatically solved by our request that the connection r should coincide with

D when acting on space-time indices and hence should have identical torsion (see (2.4),

(2.8)).

To compare with the standard Dirac equations of motion we simply replace D with

r. This leads to

�aAA0ra�
A =

imp
2
�A0 �aAA0ra�

A0

=
imp
2
�A; (3:2a)

9
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�aAA0ra�
A0

=
imp
2
�A �aAA0ra�

A =
imp
2
�A0 : (3:2b)

With our conventions �aAA0 are taken to be antihermitian. Although equations (3.2a)-

(3.2b) resemble ordinary Dirac equations in curved space-time, one should bear in mind

r is not torsion-free. These are the equations for a Dirac �eld minimally coupled to

gravity with torsion (see e.g. [9]). The rest of the �eld equations requires varying w.r.t.

D and �aAA0 . As usual in the Palatini formalism, the former variation yields the value of

the torsion (section 2) whereas the latter leads to the Einstein (-Cartan) equations with

source the spin-1
2
�eld [7,9], i.e.

Gab =
1p
2
�bAA0

h
�A

0 �ra�
A
�
�
�
ra�

A0

�
�A + �A

�
ra�

A0

�
�
�
ra�

A
�
�A

0

i
: (3:3)

It is now possible to make contact with the results of [5]. The authors of this reference

found a cubic term in fermionic �elds in their Dirac equation and stressed it has its origin

in the kind of theory they started with, i.e. the torsion in the �rst-order theory (2.2) by

analogy with the ECSKD action (2.1). This is explicitly shown below by splitting out

the torsion contribution from the connection r introduced above. Let er be the unique

torsion-free connection compatible with the metric gab = �aAA0�AA
0

b . Hence, there exists

a tensor Q c
ab , and its spinor version �aBC, �aB0C0 , relating er and r through [10]

�era �ra

�
vb = Q b

ac vc; (3:4)

�era �ra

�
�A = � A

a B �B; (3:5)

�era �ra

�
�A

0

= �
A0

a B0 �B
0

; (3:6)

where the spinor decomposition

Q c
ab =

h
� C
a B � C0

B0 +�
C

0

a B0 � C
B

i
�BB

0

b �cCC0 ; (3:7)

�aBC =
1

2
�bBB0 �c B0

C Qabc; (3:8)

10
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is implied. With our notation, �aBD corresponds to CaBD appearing in [5]. Furthermore

T c
ab = 2Q c

[ab]; (3:9)

Qabc = Ta[bc] �
1

2
Tbca; (3:10)

the �rst of which states that er is torsion-free and the second is a result of the metricity

condition [10]. The torsion information is hence contained in �aBC. In the case of Dirac

�elds one gets, inserting (2.17) into the above relations,

�aBC =
i

4
k(BA0 � A0

aC) : (3:11)

Hereby the modi�cation to the Dirac equation found in [5] is explicitly determined, its

origin being the non-vanishing torsion; by virtue of (3.5) and (3.11), the �rst of the Dirac

equations (3.2a) takes the form

�aAA0ra�
A = �aAA0

�era �
3i

8
ka

�
�A =

imp
2
�A0 : (3:12)

This result extends to the primed-indices spinor equations (3.2) through �aB0C0 , and,

similarly, to the Einstein equations (3.3). Such a modi�cation was discussed previously in

a U4-theory [9]. The reduced action of [5] is thereby obtained. In particular, the four-Fermi

interaction term, �kmk
m, is brought into the action; in other words, using the space-time-

indices version of the identity (2.9) (cf. [10]) for the curvatures of r and er, one gets the
following relation between the corresponding scalars: R = eR� 3

8
kmk

m.

4. - Concluding remarks.

Our analysis proves the equivalence between the self-dual and the ECSK forms of the

action coupling Dirac �elds to gravity, by introducing a connection with non-vanishing

torsion. The key steps are the use of the Bianchi symmetry of the curvature of such a

connection, here including torsion, and the result that the torsion for this system is totally

antisymmetric. Thus, the actions di�er by total divergences. They lead to boundary terms

11
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only, since the volume terms they involve are proportional to the trace of the torsion, and

hence vanish. This can be considered the explicit version of an observation �rst made

by Dolan [14]. He studied the canonical transformation, in pure gravity, from tetrad and

connection variables to Ashtekar's variables. According to [14], the generating function,

when torsion is present, has the same structure, whenever torsion is totally antisymmetric;

this is the case for ED theory and supergravity. On the other hand, Jacobson [4] used

another approach to prove the above equivalence of the actions. The boundary terms he

�nds, can thus be traced back to the Bianchi identity by using the present results (see the

second term in (2.25)).

Moreover, we have shown explicitly that the extra term entering the Dirac equations

obtained in [1,5] from the self-dual action is a torsion term. By splitting the self-dual con-

nection into its torsion-free and torsion parts, the standard four-Fermi interaction in the

action is obtained [4-5]. These results completely agree with [9], where the authors investi-

gated the four-Fermi interaction using a certain anholonomic basis and the corresponding

connection.

We are currently investigating the holomorphic version of the ECSKD theory, mo-

tivated by the complex space-time program of Penrose [15]. The corresponding theory

appears to be more rich than the usual ECSKD theory studied in canonical gravity and

in our paper, and it deserves further study to shed new light on complex general relativity

and quantum gravity.

* * *
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