701 research outputs found

    Pseudo Goldstone Bosons Phenomenology in Minimal Walking Technicolor

    Get PDF
    We construct the non-linear realized Lagrangian for the Goldstone Bosons associated to the breaking pattern of SU(4) to SO(4). This pattern is expected to occur in any Technicolor extension of the standard model featuring two Dirac fermions transforming according to real representations of the underlying gauge group. We concentrate on the Minimal Walking Technicolor quantum number assignments with respect to the standard model symmetries. We demonstrate that for, any choice of the quantum numbers, consistent with gauge and Witten anomalies the spectrum of the pseudo Goldstone Bosons contains electrically doubly charged states which can be discovered at the Large Hadron Collider.Comment: 25 pages, 5 figure

    Predictions for Triple Stars with and without a Pulsar in Star Clusters

    Full text link
    Though about 80 pulsar binaries have been detected in globular clusters so far, no pulsar has been found in a triple system in which all three objects are of comparable mass. Here we present predictions for the abundance of such triple systems, and for the most likely characteristics of these systems. Our predictions are based on an extensive set of more than 500 direct simulations of star clusters with primordial binaries, and a number of additional runs containing primordial triples. Our simulations employ a number N_{tot} of equal mass stars from N_{tot}=512 to N_{tot}=19661 and a primordial binary fraction from 0-50%. In addition, we validate our results against simulations with N=19661 that include a mass spectrum with a turn-off mass at 0.8 M_{sun}, appropriate to describe the old stellar populations of galactic globular clusters. Based on our simulations, we expect that typical triple abundances in the core of a dense cluster are two orders of magnitude lower than the binary abundances, which in itself already suggests that we don't have to wait too long for the first comparable-mass triple with a pulsar to be detected.Comment: 11 pages, minor changes to match MNRAS accepted versio

    The M/L ratio of massive young clusters

    Full text link
    We point out a strong time-evolution of the mass-to-light conversion factor \eta commonly used to estimate masses of dense star clusters from observed cluster radii and stellar velocity dispersions. We use a gas-dynamical model coupled with the Cambridge stellar evolution tracks to compute line-of-sight velocity dispersions and half-light radii weighted by the luminosity. Stars at birth are assumed to follow the Salpeter mass function in the range [0.15--17 M_\sun]. We find that η\eta, and hence the estimated cluster mass, increases by factors as large as 3 over time-scales of 20 million years. Increasing the upper mass limit to 50 M_\sun leads to a sharp rise of similar amplitude but in as little as 10 million years. Fitting truncated isothermal (Michie-King) models to the projected light profile leads to over-estimates of the concentration par ameter c of δc0.3\delta c\approx 0.3 compared to the same functional fit applied to the proj ected mass density.Comment: Draft version of an ApJ lette

    The Journey through Perspective Transformation: Learning Nursing Theory

    Get PDF
    Through the use of grounded theory, educational methods most useful for nurses to achieve a perspective transformation, as exemplified by learning nursing theory were examined. Perspective transformation is a theory originally developed by Mezirow (1978) in a study of older women returning to college for additional education. Mezirow defined perspective transformation as the alteration or change of meaning perspectives. Perspective transformation in an individual can be compared to a paradigm change within a scientific community. Within the nursing literature on perspective transformation, most articles related to the perspective transformation needed for nurses to learn to use nursing theory as the framework for patient care. Little has been written on how nurses learn nursing theory, none found from the perspective of the learner. The experiences of 21 working nurses who had made a perspective transformation by learning nursing theory and practicing within a nursing theoretical framework were examined. One hour interviews were taped and transcribed. Data were coded using Level 1 open coding, Level 2 axial coding, and Level 3 selective coding. Study findings indicated that nurses achieving perspective transformation go through three nonlinear stages: (a) becoming aware, (b) developing meaning, and (c) perspective transformation. Those evolving beyond perspective transformation to self-actualization go through a fourth stage. During this stage, they combined theoretical models to create a personal nursing model for patient care. Nursing needs to operate within its own theoretical base. Nursing theory helps describe, explain, predict, or prescribe the phenomenon that are the reality of nursing. This study is important because it examined the most useful methods to help nurses learn nursing theory, incorporate theory into practice, and achieve perspective transformation. Future research studies should continue to pursue: (a) how to help nurses learn to incorporate nursing theoretical models into practice, (b) how to encourage organizational support of nursing theoretical frameworks, (c) satisfaction of patients cared for within the framework of nursing theoretical models, (d) the improvement of patient care through the use of nursing theory in practice, and (e) the professional growth of nurses practicing through the use of nursing theoretical frameworks

    Models of core reconstruction for the 90-degree partial dislocation in semiconductors

    Full text link
    We compare the models that have been proposed in the literature for the atomic structure of the 90-degree partial dislocation in the homopolar semiconductors, silicon, diamond, and germanium. In particular, we examine the traditional single-period and our recently proposed double-period core structures. Ab-initio and tight-binding results on the core energies are discussed, and the geometries are compared in light of the available experimental information about dislocations in these systems. The double-period geometry is found to be the ground-state structure in all three materials. We address boundary-conditions issues that have been recently raised about these results. The structures of point excitations (kinks, solitons, and kink-soliton complexes) in the two geometries are also reviewed.Comment: 9 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/rn_eds/index.htm

    HST Observations of the Central-Cusp Globular Cluster NGC 6752. The Effect of Binary Stars on the Luminosity Function in the Core

    Get PDF
    We consider the effect of binary stars on the main-sequence luminosity functions observed in the core of globular clusters, with specific reference to NGC 6752. We find that mass segregation results in an increased binary fraction at fainter magnitudes along the main-sequence. If this effect is not taken into account when analyzing luminosity functions, erroneous conclusions can be drawn regarding the distribution of single stars, and the dynamical state of the cluster. In the core of NGC 6752, our HST data reveal a flat luminosity function, in agreement with previous results. However, when we correct for the increasing binary fraction at faint magnitudes, the LF begins to fall immediately below the turn-off. This effect appears to be confined to the inner core radius of the cluster.Comment: 10 pages, 3 figures Accepted to ApJ Lett Vol 513 Number

    Planets in triple star systems--the case of HD188753

    Full text link
    We consider the formation of the recently discovered ``hot Jupiter'' planet orbiting the primary component of the triple star system HD188753. Although the current outer orbit of the triple is too tight for a Jupiter-like planet to have formed and migrated to its current location, the binary may have been much wider in the past. We assume here that the planetary system formed in an open star cluster, the dynamical evolution of which subsequently led to changes in the system's orbital parameters and binary configuration. We calculate cross sections for various scenarios that could have led to the multiple system currently observed, and conclude that component A of HD188753 with its planet were most likely formed in isolation to be swapped in a triple star system by a dynamical encounter in an open star cluster. We estimate that within 500pc of the Sun there are about 1200 planetary systems which, like Hd188753, have orbital parameters unfavorable for forming planets but still having a planet, making it quite possible that the HD188753 system was indeed formed by a dynamical encounter in an open star cluster.Comment: ApJ Letters in pres

    Atomic structure of dislocation kinks in silicon

    Full text link
    We investigate the physics of the core reconstruction and associated structural excitations (reconstruction defects and kinks) of dislocations in silicon, using a linear-scaling density-matrix technique. The two predominant dislocations (the 90-degree and 30-degree partials) are examined, focusing for the 90-degree case on the single-period core reconstruction. In both cases, we observe strongly reconstructed bonds at the dislocation cores, as suggested in previous studies. As a consequence, relatively low formation energies and high migration barriers are generally associated with reconstructed (dangling-bond-free) kinks. Complexes formed of a kink plus a reconstruction defect are found to be strongly bound in the 30-degree partial, while the opposite is true in the case of 90-degree partial, where such complexes are found to be only marginally stable at zero temperature with very low dissociation barriers. For the 30-degree partial, our calculated formation energies and migration barriers of kinks are seen to compare favorably with experiment. Our results for the kink energies on the 90-degree partial are consistent with a recently proposed alternative double-period structure for the core of this dislocation.Comment: 12 pages, two-column style with 8 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#rn_di

    The surface density profile of NGC 6388: a good candidate for harboring an intermediate-mass black hole

    Full text link
    We have used a combination of high resolution (HST ACS-HRC, ACS-WFC, and WFPC2) and wide-field (ESO-WFI) observations of the galactic globular cluster NGC 6388 to derive its center of gravity, projected density profile, and central surface brightness profile. While the overall projected profiles are well fit by a King model with intermediate concentration (c=1.8) and sizable core radius (rc=7"), a significant power law (with slope \alpha=-0.2) deviation from a flat core behavior has been detected within the inner 1 arcsecond. These properties suggest the presence of a central intermediate mass black hole. The observed profiles are well reproduced by a multi-mass isotropic, spherical model including a black hole with a mass of ~5.7x10^3 Msol.Comment: ApJ Letter in pres
    corecore