We point out a strong time-evolution of the mass-to-light conversion factor
\eta commonly used to estimate masses of dense star clusters from observed
cluster radii and stellar velocity dispersions. We use a gas-dynamical model
coupled with the Cambridge stellar evolution tracks to compute line-of-sight
velocity dispersions and half-light radii weighted by the luminosity. Stars at
birth are assumed to follow the Salpeter mass function in the range [0.15--17
M_\sun]. We find that η, and hence the estimated cluster mass, increases
by factors as large as 3 over time-scales of 20 million years. Increasing the
upper mass limit to 50 M_\sun leads to a sharp rise of similar amplitude but
in as little as 10 million years.
Fitting truncated isothermal (Michie-King) models to the projected light
profile leads to over-estimates of the concentration par ameter c of δc≈0.3 compared to the same functional fit applied to the proj ected
mass density.Comment: Draft version of an ApJ lette