6 research outputs found

    A simple score to estimate the likelihood of pseudoprogression vs. recurrence following stereotactic radiosurgery for brain metastases: The Bergen Criteria

    Get PDF
    Background A major challenge in the follow-up of patients treated with stereotactic radiosurgery (SRS) for brain metastases (BM) is to distinguish pseudoprogression (PP) from tumor recurrence (TR). The aim of the study was to develop a clinical risk assessment score. Methods Follow-up images of 87 of 97 consecutive patients treated with SRS for 348 BM were analyzed. Of these, 100 (28.7%) BM in 48 (53.9%) patients responded with either TR (n = 53, 15%) or PP (n = 47, 14%). Differences between the 2 groups were analyzed and used to develop a risk assessment score (the Bergen Criteria). Results Factors associated with a higher incidence of PP vs. TR were as follows: prior radiation with whole brain radiotherapy or SRS (P = .001), target cover ratio ≥98% (P = .048), BM volume ≤2 cm3 (P = .054), and primary lung cancer vs. other cancer types (P = .084). Based on the presence (0) or absence (1) of these 5 characteristics, the Bergen Criteria was established. A total score 3 points were associated with 84% TR and 16% PP, P < .001. Conclusion Based on 5 characteristics at the time of SRS the Bergen Criteria could robustly differentiate between PP vs. TR following SRS. The score is user-friendly and provides a useful tool to guide the decision making whether to retreat or observe at appropriate follow-up intervals.publishedVersio

    The styryl benzoic acid derivative DC10 potentiates radiotherapy by targeting the xCT-glutathione axis

    Get PDF
    Metastatic tumors with moderate radiosensitivity account for most cancer-related deaths, highlighting the limitations of current radiotherapy regimens. The xCT-inhibitor sulfasalazine (SAS) sensitizes cancer cells to radiotherapy by blocking cystine uptake via the xCT membrane antiporter, and thereby glutathione (GSH) synthesis protecting against radiation-induced oxidative stress. The expression of xCT in multiple tumor types implies it as a target generic to cancer rather than confined to few subtypes. However, SAS has limited clinical potential as a radiosensitizer due to side effects and low bioavailability. Using SAS as a starting point, we previously developed synthetic xCT-inhibitors through scaffold hopping and structure optimization aided by structure-activity relationship analysis (SAR). Notably, the compound DC10 exhibited inhibition of GSH synthesis. In this study, we validated DC10 as a radiosensitizer in the xCT-expressing cancer cell lines A172, A375 and MCF7, and mice harboring melanoma xenografts. After DC10 treatment, we measured 14C-cystine uptake in the cancer cells using liquid scintillation counting, and intracellular GSH levels and reactive oxygen species (ROS) using luminescence assays. We performed immunoblotting of H2AX and ATM to assess DNA damage after treatment with DC10 and radiotherapy. We then assessed the effect of adding DC10 to radiation upon cancer cell colony formation. Blood samples from mice treated with DC10 underwent biochemical analysis to assess toxicity. Finally, mice with A375 melanomas in the flank, received DC10 and radiotherapy in combination, as monotherapies or no treatment. Notably, DC10 reduced cystine uptake and GSH synthesis and increased ROS levels in a dose-dependent manner. Furthermore, DC10 interacted synergistically with radiation to increase DNA damage and reduce tumor cell colony formation. Mice receiving DC10 were clinically unaffected, whereas blood samples analysis to assess bone marrow suppression, liver or kidney toxicity revealed no significant differences between treated mice and untreated controls. Importantly, DC10 potentiated the anti-tumor efficacy of radiation in mice with melanoma xenografts. We conclude that DC10 is well tolerated and acts as a radiosensitizer by inhibiting cystine uptake, leading to GSH depletion and increased oxidative stress. Our findings demonstrate the feasibility of using synthetic xCT-inhibitors to overcome radioresistance.publishedVersio

    Gamma knife surgery as monotherapy with clinically relevant doses prolongs survival in a Human GBM Xenograft Model

    Get PDF
    Object. Gamma knife surgery (GKS) may be used for recurring glioblastomas (GBMs). However, patients have then usually undergone multimodal treatment, which makes it difficult to specifically validate GKS independent of established treatments. Thus, we developed an experimental brain tumor model to assess the efficacy and radiotoxicity associated with GKS. Methods. GBM xenografts were implanted intracerebrally in nude rats, and engraftment was confirmed with MRI. The rats were allocated to GKS, with margin doses of 12Gy or 18Gy, or to no treatment. Survival time was recorded, tumor sections were examined, and radiotoxicity was evaluated in a behavioral open field test. Results. In the first series, survival from the time of implantation was 96 days in treated rats and 72 days in controls ( < 0.001). In a second experiment, survival was 72 days in the treatment group versus 54 days in controls ( < 0.006). Polynuclear macrophages and fibrosis was seen in groups subjected to GKS. Untreated rats with GBM xenografts displayed less mobility than GKS-treated animals in the open field test 4 weeks after treatment ( = 0.04). Conclusion.GKS administered with clinically relevant doses prolongs survival in rats harboringGBMxenografts, and the associated toxicity is mild.publishedVersio

    A simple score to estimate the likelihood of pseudoprogression vs. recurrence following stereotactic radiosurgery for brain metastases: The Bergen Criteria

    No full text
    Background A major challenge in the follow-up of patients treated with stereotactic radiosurgery (SRS) for brain metastases (BM) is to distinguish pseudoprogression (PP) from tumor recurrence (TR). The aim of the study was to develop a clinical risk assessment score. Methods Follow-up images of 87 of 97 consecutive patients treated with SRS for 348 BM were analyzed. Of these, 100 (28.7%) BM in 48 (53.9%) patients responded with either TR (n = 53, 15%) or PP (n = 47, 14%). Differences between the 2 groups were analyzed and used to develop a risk assessment score (the Bergen Criteria). Results Factors associated with a higher incidence of PP vs. TR were as follows: prior radiation with whole brain radiotherapy or SRS (P = .001), target cover ratio ≥98% (P = .048), BM volume ≤2 cm3 (P = .054), and primary lung cancer vs. other cancer types (P = .084). Based on the presence (0) or absence (1) of these 5 characteristics, the Bergen Criteria was established. A total score 3 points were associated with 84% TR and 16% PP, P < .001. Conclusion Based on 5 characteristics at the time of SRS the Bergen Criteria could robustly differentiate between PP vs. TR following SRS. The score is user-friendly and provides a useful tool to guide the decision making whether to retreat or observe at appropriate follow-up intervals

    Gamma knife surgery as monotherapy with clinically relevant doses prolongs survival in a Human GBM Xenograft Model

    Get PDF
    Object. Gamma knife surgery (GKS) may be used for recurring glioblastomas (GBMs). However, patients have then usually undergone multimodal treatment, which makes it difficult to specifically validate GKS independent of established treatments. Thus, we developed an experimental brain tumor model to assess the efficacy and radiotoxicity associated with GKS. Methods. GBM xenografts were implanted intracerebrally in nude rats, and engraftment was confirmed with MRI. The rats were allocated to GKS, with margin doses of 12Gy or 18Gy, or to no treatment. Survival time was recorded, tumor sections were examined, and radiotoxicity was evaluated in a behavioral open field test. Results. In the first series, survival from the time of implantation was 96 days in treated rats and 72 days in controls ( < 0.001). In a second experiment, survival was 72 days in the treatment group versus 54 days in controls ( < 0.006). Polynuclear macrophages and fibrosis was seen in groups subjected to GKS. Untreated rats with GBM xenografts displayed less mobility than GKS-treated animals in the open field test 4 weeks after treatment ( = 0.04). Conclusion.GKS administered with clinically relevant doses prolongs survival in rats harboringGBMxenografts, and the associated toxicity is mild

    The styryl benzoic acid derivative DC10 potentiates radiotherapy by targeting the xCT-glutathione axis

    No full text
    Metastatic tumors with moderate radiosensitivity account for most cancer-related deaths, highlighting the limitations of current radiotherapy regimens. The xCT-inhibitor sulfasalazine (SAS) sensitizes cancer cells to radiotherapy by blocking cystine uptake via the xCT membrane antiporter, and thereby glutathione (GSH) synthesis protecting against radiation-induced oxidative stress. The expression of xCT in multiple tumor types implies it as a target generic to cancer rather than confined to few subtypes. However, SAS has limited clinical potential as a radiosensitizer due to side effects and low bioavailability. Using SAS as a starting point, we previously developed synthetic xCT-inhibitors through scaffold hopping and structure optimization aided by structure-activity relationship analysis (SAR). Notably, the compound DC10 exhibited inhibition of GSH synthesis. In this study, we validated DC10 as a radiosensitizer in the xCT-expressing cancer cell lines A172, A375 and MCF7, and mice harboring melanoma xenografts. After DC10 treatment, we measured 14C-cystine uptake in the cancer cells using liquid scintillation counting, and intracellular GSH levels and reactive oxygen species (ROS) using luminescence assays. We performed immunoblotting of H2AX and ATM to assess DNA damage after treatment with DC10 and radiotherapy. We then assessed the effect of adding DC10 to radiation upon cancer cell colony formation. Blood samples from mice treated with DC10 underwent biochemical analysis to assess toxicity. Finally, mice with A375 melanomas in the flank, received DC10 and radiotherapy in combination, as monotherapies or no treatment. Notably, DC10 reduced cystine uptake and GSH synthesis and increased ROS levels in a dose-dependent manner. Furthermore, DC10 interacted synergistically with radiation to increase DNA damage and reduce tumor cell colony formation. Mice receiving DC10 were clinically unaffected, whereas blood samples analysis to assess bone marrow suppression, liver or kidney toxicity revealed no significant differences between treated mice and untreated controls. Importantly, DC10 potentiated the anti-tumor efficacy of radiation in mice with melanoma xenografts. We conclude that DC10 is well tolerated and acts as a radiosensitizer by inhibiting cystine uptake, leading to GSH depletion and increased oxidative stress. Our findings demonstrate the feasibility of using synthetic xCT-inhibitors to overcome radioresistance
    corecore