31 research outputs found

    Motivational Modulation of Age-Related Effects on Reaching Adaptation

    Get PDF
    Previous studies have provided consistent evidence that adaptation to visuomotor rotations during reaching declines with age. Since it has been recently shown that learning and retention components of motor adaptation are modulated by reward and punishment, we were interested in how motivational feedback affects age-related decline in reaching adaptation. We studied 35 young and 32 older adults in a reaching task which required fast shooting movements toward visual targets with their right hand. A robotic manipulandum (vBOT system) allowed measuring reaching trajectories. Targets and visual feedback on hand position were presented using a setup that prevented direct vision of the hand and projected a virtual image by a semi-silvered mirror. After a baseline block with veridical visual feedback we introduced a 30° counterclockwise visuomotor rotation. After this adaptation block we also measured retention of adaptation without visual feedback and finally readaptation for the previously experienced rotation. In the adaptation block participants were assigned to one of three motivational feedback conditions, i.e., neutral, reward, or punishment. Reward and punishment feedback was based on reaching endpoint error. Our results consistently corroborated reduced motor learning capacities in older adults (p < 0.001, η2 = 0.56). However, motivational feedback modulated learning rates equivalently in both age groups (p = 0.028, η2 = 0.14). Rewarding feedback induced faster learning, though punishing feedback had no effect. For retention we determined a significant interaction effect between motivational feedback and age group (p = 0.032, η2 = 0.13). Previously provided motivational feedback was detrimental for young adults, but not for older adults. We did not observe robust effects of motivational feedback on readaptation (p = 0.167, η2 = 0.07). Our findings support that motor learning is subject to modulation by motivational feedback. Whereas learning is boosted across both age groups, retention is vulnerable to previously experienced motivational incentives in young adults. In summary, in particular older adults benefit from motivational feedback during reaching adaptation so that age-related differences in visuomotor plasticity, though persisting, can be attenuated. We suggest that the use of motivational information provides a potentially compensatory mechanism during functional aging

    The Impact of Augmented Information on Visuo-Motor Adaptation in Younger and Older Adults

    Get PDF
    BACKGROUND: Adjustment to a visuo-motor rotation is known to be affected by ageing. According to previous studies, the age-related differences primarily pertain to the use of strategic corrections and the generation of explicit knowledge on which strategic corrections are based, whereas the acquisition of an (implicit) internal model of the novel visuo-motor transformation is unaffected. The present study aimed to assess the impact of augmented information on the age-related variation of visuo-motor adjustments. METHODOLOGY/PRINCIPAL FINDINGS: Participants performed aiming movements controlling a cursor on a computer screen. Visual feedback of direction of cursor motion was rotated 75 degrees relative to the direction of hand motion. Participants had to adjust to this rotation in the presence and absence of an additional hand-movement target that explicitly depicted the input-output relations of the visuo-motor transformation. An extensive set of tests was employed in order to disentangle the contributions of different processes to visuo-motor adjustment. Results show that the augmented information failed to affect the age-related variations of explicit knowledge, adaptive shifts, and aftereffects in a substantial way, whereas it clearly affected initial direction errors during practice and proprioceptive realignment. CONCLUSIONS: Contrary to expectations, older participants apparently made no use of the augmented information, whereas younger participants used the additional movement target to reduce initial direction errors early during practice. However, after a first block of trials errors increased, indicating a neglect of the augmented information, and only slowly declined thereafter. A hypothetical dual-task account of these findings is discussed. The use of the augmented information also led to a selective impairment of proprioceptive realignment in the younger group. The mere finding of proprioceptive realignment in adaptation to a visuo-motor rotation in a computer-controlled setup is noteworthy since visual and proprioceptive information pertain to different objects

    Gaze Behavior in a Natural Environment with a Task-Relevant Distractor: How the Presence of a Goalkeeper Distracts the Penalty Taker

    Get PDF
    Gaze behavior in natural scenes has been shown to be influenced not only by top–down factors such as task demands and action goals but also by bottom–up factors such as stimulus salience and scene context. Whereas gaze behavior in the context of static pictures emphasizes spatial accuracy, gazing in natural scenes seems to rely more on where to direct the gaze involving both anticipative components and an evaluation of ongoing actions. Not much is known about gaze behavior in far-aiming tasks in which multiple task-relevant targets and distractors compete for the allocation of visual attention via gaze. In the present study, we examined gaze behavior in the far-aiming task of taking a soccer penalty. This task contains a proximal target, the ball; a distal target, an empty location within the goal; and a salient distractor, the goalkeeper. Our aim was to investigate where participants direct their gaze in a natural environment with multiple potential fixation targets that differ in task relevance and salience. Results showed that the early phase of the run-up seems to be driven by both the salience of the stimulus setting and the need to perform a spatial calibration of the environment. The late run-up, in contrast, seems to be controlled by attentional demands of the task with penalty takers having habitualized a visual routine that is not disrupted by external influences (e.g., the goalkeeper). In addition, when trying to shoot a ball as accurately as possible, penalty takers directed their gaze toward the ball in order to achieve optimal foot-ball contact. These results indicate that whether gaze is driven by salience of the stimulus setting or by attentional demands depends on the phase of the actual task

    Comparison of the younger and older adults on a set of control variables.

    No full text
    <p>For each group the means and the standard deviations (in brackets) are given, and for each variable the result of a Mann-Whitney U-test (durations are in s). In the cognitive tasks, higher values indicate better performance.</p

    Mean movement time during practice of the young and old group as a function of block of trials.

    No full text
    <p>(a) Day 1 with additional hand target and 75° CW rotation, (b) day 2 without augmented information and 75° CCW rotation (error bars indicate standard errors of the mean).</p

    Mean proprioceptive shifts in the young and old group on both days of the experiment (error bars indicate standard errors of the mean).

    No full text
    <p>Mean proprioceptive shifts in the young and old group on both days of the experiment (error bars indicate standard errors of the mean).</p

    Pre-to-posttest changes in terminal movement direction relative to the visual target direction.

    No full text
    <p>Mean (a) adaptive shifts, (b) aftereffects, and (c) explicit shifts in visual open-loop tests with cued presence (a, c) and cued absence (b) of the transformation for the young and old group averaged across target directions shown separately for day 1 after practice of the 75° CW rotation with the additional hand target present and for day 2 after practice of the 75° CCW rotation without augmented information (error bars indicate standard errors of the mean).</p

    Mean initial errors of cursor direction (200 ms after movement onset) during practice of the young and old group as a function of block of trials.

    No full text
    <p>(a) Day 1 with additional hand target and 75° CW rotation, (b) day 2 without augmented information and 75° CCW rotation (error bars indicate standard errors of the mean).</p
    corecore