1,530 research outputs found
When Language Breaks
In “Logic and Conversation,” H. P. Grice posits that in conversations, we are “always-already” implying certain things about the subjects of our words while abiding by certain rules to aid in understanding. It is my view, however, that Grice’s so-called “cooperative principle” can be analyzed under the traditional Heideggerian dichotomy of ready-to-hand and present-at-hand wherein language can be viewed as a “mere” tool that sometimes breaks. Ultimately, I contend that the likening of language to a tool allows for a more robust understanding of it and conversational failures, while ontologically recategorizing language as an object of sorts
Rail transit fare collection: Policy and technology assessment
The impact of fare policies and fare structure on the selection of equipment was investigated, fare collection systems are described, hardware and technology related problems are documented, and the requirements of a fare collection simulation model are outlined. Major findings include: (1) a wide variation in the fare collection systems and equipment, caused primarily by historical precedence; (2) the reliability of AFC equipment used at BART and WMATA discouraged other properties from considering use of similar equipment; (3) existing equipment may not meet the fare collection needs of properties in the near future; (4) the cost of fare collection operation and maintenance is high; and (5) the relatively small market in fare collection equipment discourages new product development by suppliers. Recommendations for fare collection R&D programs include development of new hardware to meet rail transit needs, study of impacts of alternate fare policies increased communication among policymakers, and consensus on fare policy issues
California Methanol Assessment; Volume II, Technical Report
A joint effort by the Jet Propulsion Laboratory and the California Institute of Technology Division of Chemistry and Chemical Engineering has brought together sponsors from both the public and private sectors for an analysis of the prospects for methanol use as a fuel in California, primarily for the transportation and stationary application sectors. Increasing optimism in 1982 for a slower rise in oil prices and a more realistic understanding of the costs of methanol production have had a negative effect on methanol viability in the near term (before the year 2000). Methanol was determined to have some promise in the transportation sector, but is not forecasted for large-scale use until beyond the year 2000. Similarly, while alternative use of methanol can have a positive effect on air quality (reducing NOx, SOx, and other emissions), a best case estimate is for less than 4% reduction in peak ozone by 2000 at realistic neat methanol vehicle adoption rates. Methanol is not likely to be a viable fuel in the stationary application sector because it cannot compete economically with conventional fuels except in very limited cases. On the production end, it was determined that methanol produced from natural gas will continue to dominate supply options through the year 2000, and the present and planned industry capacity is somewhat in excess of all projected needs. Nonsubsidized coal-based methanol cannot compete with conventional feedstocks using current technology, but coal-based methanol has promise in the long term (after the year 2000), providing that industry is willing to take the technical and market risks and that government agencies will help facilitate the environment for methanol.
Given that the prospects for viable major markets (stationary applications and neat fuel in passenger cars) are unlikely in the 1980s and early 1990s, the next steps for methanol are in further experimentation and research of production and utilization technologies, expanded use as an octane enhancer, and selected fleet implementation. In the view of the study, it is not advantageous at this time to establish policies within California that attempt to expand methanol use rapidly as a neat fuel for passenger cars or to induce electric utility use of methanol on a widespread basis
California methanol assessment. Volume 1: Summary report
The near term methanol industry, the competitive environment, long term methanol market, the transition period, air quality impacts of methanol, roles of the public and private sectors are considered
An assessment of inductive coupling roadway powered vehicles
The technical concept underlying the roadway powered vehicle system is the combination of an electrical power source embedded in the roadway and a vehicle-mounted power pickup that is inductively coupled to the roadway power source. The feasibility of such a system, implemented on a large scale was investigated. Factors considered included current and potential transportation modes and requirements, economics, energy, technology, social and institutional issues. These factors interrelate in highly complex ways, and a firm understanding of each of them does not yet exist. The study therefore was structured to manipulate known data in equally complex ways to produce a schema of options and useful questions that can form a basis for further, harder research. A dialectical inquiry technique was used in which two adversary teams, mediated by a third-party team, debated each factor and its interrelationship with the whole of the known information on the topic
Automotive technology status and projections. Volume 2: Assessment report
Current and advanced conventional engines, advanced alternative engines, advanced power train components, and other energy conserving automobile modifications which could be implemented by the end of this century are examined. Topics covered include gas turbine engines, Stirling engines, advanced automatic transmissions, alternative fuels, and metal and ceramic technology. Critical problems are examined and areas for future research are indicated
A head-up display for mid-air drone recovery
During mid-air retrieval of parachute packages, the absence of a natural horizon creates serious difficulties for the pilot of the recovery helicopter. A head-up display (HUD) was tested in an attempt to solve this problem. Both a roll-stabilized HUD and a no-roll (pitch only) HUD were tested. The results show that fewer missed passes occurred with the roll-stabilized HUD when the horizon was obscured. The pilots also reported that the workload was greatly reduced. Roll-stabilization was required to prevent vertigo when flying in the absence of a natural horizon. Any HUD intended for mid-air retrieval should display pitch, roll, sideslip, airspeed, and vertical velocity
Automotive technology status and projections. Volume 1: Executive summary
Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements
Weak antilocalization in quasi-two-dimensional electronic states of epitaxial LuSb thin films
Observation of large non-saturating magnetoresistance in rare-earth
monopnictides has raised enormous interest in understanding the role of its
electronic structure. Here, by a combination of molecular-beam epitaxy,
low-temperature transport, angle-resolved photoemssion spectroscopy, and hybrid
density functional theory we have unveiled the bandstructure of LuSb, where
electron-hole compensation is identified as a mechanism responsible for large
magnetoresistance in this topologically trivial compound. In contrast to bulk
single crystal analogues, quasi-two-dimensional behavior is observed in our
thin films for both electron and holelike carriers, indicative of dimensional
confinement of the electronic states. Introduction of defects through growth
parameter tuning results in the appearance of quantum interference effects at
low temperatures, which has allowed us to identify the dominant inelastic
scattering processes and elucidate the role of spin-orbit coupling. Our
findings open up new possibilities of band structure engineering and control of
transport properties in rare-earth monopnictides via epitaxial synthesis.Comment: 20 pages, 12 figures; includes supplementary informatio
- …
