121 research outputs found

    Perceptions of Texas High School Football Coaches Regarding Concussions

    Get PDF
    With new information regarding degenerative neurological problems, researchers linked Alzheimer’s disease with repeated head injuries such as a concussion. The new findings resulted in an outcry from the public, and the medical fraternity provided more information and safety for coaches and players. To this end, football regulations have been amended and player education, especially at the high school level, has increased. The purpose of this qualitative multiple case study was to explore how medical data and media exposure on the subject of football-related concussions influence the perceptions and practices of Texas high school football coaches. The study was conducted at five school districts, and the participants included eight head football coaches in Texas. The methodology applied semi-structured interviews and direct observations for data collection. The data were analyzed using field notes and NVivo coding, which uncovered four themes that were used to substantiate the findings. The key findings from this study indicated a need for a continuation of increased concussion awareness. Also, findings from this study indicated media coverage and recent medical findings increased the coaches\u27 awareness of the potential seriousness of concussions, and media coverage and recent medical findings influenced their coaching practices and attitude towards the sport. Concussed athletes were handled according to UIL protocol, which included talking to parents. The concussion protocol of the school eased the burden off the coaches and allowed them to focus on coaching the team

    Predicting corn tiller development in restrictive environments can be achieved to enhance defensive management decision tools for producers

    Get PDF
    IntroductionWhile globally appreciated for reliable, intensification-friendly phenotypes, modern corn (Zea mays L.) genotypes retain crop plasticity potential. For example, weather and heterogeneous field conditions can overcome phenotype uniformity and facilitate tiller expression. Such plasticity may be of interest in restrictive or otherwise variable environments around the world, where corn production is steadily expanding. No substantial effort has been made in available literature to predict tiller development in field scenarios, which could provide insight on corn plasticity capabilities and drivers. Therefore, the objectives of this investigation are as follows: 1) identify environment, management, or combinations of these factors key to accurately predict tiller density dynamics in corn; and 2) test outof-season prediction accuracy for identified factors.MethodsReplicated field trials were conducted in 17 diverse site-years in Kansas (United States) during the 2019, 2020, and 2021 seasons. Two modern corn genotypes were evaluated with target plant densities of 25000, 42000, and 60000 plants ha -1. Environmental, phenological, and morphological data were recorded and evaluated with generalized additive models.ResultsPlant density interactions with cumulative growing degree days, photothermal quotient, mean minimum and maximum daily temperatures, cumulative vapor pressure deficit, soil nitrate, and soil phosphorus were identified as important predictive factors of tiller density. Many of these factors had stark non-limiting thresholds. Factors impacting growth rates and photosynthesis (specifically vapor pressure deficit and maximum temperatures) were most sensitive to changes in plant density. Out-of-season prediction errors were seasonally variable, highlighting model limitations due to training datasets.DiscussionThis study demonstrates that tillering is a predictable plasticity mechanism in corn, and therefore could be incorporated into decision tools for restrictive growing regions. While useful for diagnostics, these models are limited in forecast utility and should be coupled with appropriate decision theory and risk assessments for producers in climatically and socioeconomically vulnerable environments

    Corn yield components can be stabilized via tillering in sub-optimal plant densities

    Get PDF
    IntroductionCrop plasticity is fundamental to sustainability discussions in production agriculture. Modern corn (Zea mays L.) genetics can compensate yield determinants to a small degree, but plasticity mechanisms have been masked by breeder selection and plant density management preferences. While tillers are a well-known source of plasticity in cereal crops, the functional trade-offs of tiller expression to the hierarchical yield formation process in corn are unknown. This investigation aimed to further dissect the consequences of tiller expression on corn yield component determination and plasticity in a range of environments from two plant fraction perspectives – i) main stalks only, considering potential functional trade-offs due to tiller expression; and ii) comprehensive (main stalk plus tillers). MethodsThis multi-seasonal study considered a dataset of 17 site-years across Kansas, United States. Replicated field trials evaluated tiller presence (removed or intact) in two hybrids (P0657AM and P0805AM) at three target plant densities (25000, 42000, and 60000 plants ha-1). Record of ears and kernels per unit area and kernel weight were collected separately for both main stalks and tillers in each plot. ResultsIndicated tiller contributions impacted the plasticity of yield components in evaluated genotypes. Ear number and kernel number per area were less dependent on plant density, but kernel number remained key to yield stability. Although ear number was less related to yield stability, ear source and type were significant yield predictors, with tiller axillary ears as stronger contributors than main stalk secondary ears in high-yielding environments. DiscussionsCertainly, managing for the most main stalk primary ears possible – that is, optimizing the plant density (which consequently reduces tiller expression), is desirable to maximize yields. However, the demonstrated escape from the deterministic hierarchy of corn yield formation may offer avenues to reduce corn management dependence on a seasonally variable optimum plant density, which cannot be remediated mid-season

    Corn Tiller Yield Contributions are Dependent on Environment: A 17 Site-Year Kansas Study

    Get PDF
    Historic breeding efforts in corn (Zea mays L.) have resulted in uniform, single-stalked phenotypes with limited potential for environmental plasticity. Therefore, plant density is a critical yield component for corn, as corn is unable to successfully compensate for a deficit of plants. Other grass crop species can overcome plant density deficits via vegetative branching (tillering), but this trait is historically undesirable in corn. Improving corn flexibility across plant densities has potential benefits, particularly considering diverse yield environments and seasonal weather uncertainties due to climate change. The present study evaluated tiller presence with two hybrids in a range of plant densities across the state of Kansas to identify yield impacts and potential usefulness of this plasticity trait in corn. Tiller presence was identified as neutral or additive to final yields, but fine-tuning plant density was confirmed as key to maximizing grain yields. Tillers have potential to stabilize yields across plant densities in productive environments. This capability may offer a source of production stability for growers when deficits develop in plant density after planting
    • …
    corecore