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Predicting corn tiller
development in restrictive
environments can be achieved to
enhance defensive management
decision tools for producers

Rachel L. Veenstra1*, Trevor J. Hefley2, Dan Berning3,
Carlos D. Messina4, Lucas A. Haag5, P.V. Vara Prasad1

and Ignacio A. Ciampitti 1*

1Department of Agronomy, Kansas State University, Manhattan, KS, United States, 2Department of
Statistics, Kansas State University, Manhattan, KS, United States, 3Corteva Agriscience Agronomy
Sciences, Johnston, IA, United States, 4Horticultural Sciences Department, University of Florida,
Gainesville, FL, United States, 5Northwest Research-Extension Center, Kansas State University, Colby,
KS, United States
Introduction: While globally appreciated for reliable, intensification-friendly

phenotypes, modern corn (Zea mays L.) genotypes retain crop plasticity potential.

For example, weather and heterogeneous field conditions can overcome

phenotype uniformity and facilitate tiller expression. Such plasticity may be of

interest in restrictive or otherwise variable environments around the world, where

corn production is steadily expanding. No substantial effort has been made in

available literature to predict tiller development in field scenarios, which could

provide insight on corn plasticity capabilities and drivers. Therefore, the objectives

of this investigation are as follows: 1) identify environment, management, or

combinations of these factors key to accurately predict tiller density dynamics in

corn; and 2) test outof-season prediction accuracy for identified factors.

Methods: Replicated field trials were conducted in 17 diverse site-years in Kansas

(United States) during the 2019, 2020, and 2021 seasons. Two modern corn

genotypes were evaluated with target plant densities of 25000, 42000, and

60000 plants ha −1. Environmental, phenological, and morphological data were

recorded and evaluated with generalized additive models.

Results: Plant density interactions with cumulative growing degree days,

photothermal quotient, mean minimum and maximum daily temperatures,

cumulative vapor pressure deficit, soil nitrate, and soil phosphorus were

identified as important predictive factors of tiller density. Many of these factors

had stark non-limiting thresholds. Factors impacting growth rates and

photosynthesis (specifically vapor pressure deficit and maximum temperatures)

were most sensitive to changes in plant density. Out-of-season prediction errors

were seasonally variable, highlighting model limitations due to training datasets.

Discussion: This study demonstrates that tillering is a predictable plasticity

mechanism in corn, and therefore could be incorporated into decision tools
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for restrictive growing regions. While useful for diagnostics, these models are

limited in forecast utility and should be coupled with appropriate decision theory

and risk assessments for producers in climatically and socioeconomically

vulnerable environments.
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1 Introduction

Corn (Zea mays L.) is a key crop in the global food economy,

partially due to predictable phenotypes that enable intensive

management. For this reason, high plant densities, optimal

planting date, and efficient fertility programs are among the key

drivers of high-yielding corn (Duvick et al., 2004; Long et al., 2017;

Schwalbert et al., 2018). Concurrently, plant uniformity is targeted

to an increasing degree by planter technologies improving

singulation and seeding depth for timely emergence (Badua et al.,

2021). Even when every effort is made to obtain field uniformity,

this goal is arguably idealistic. In reality, plant uniformity may be

disrupted by plasticity mechanisms which are often masked, but

preserved nonetheless, in the corn genome (Moulia et al., 1999). In

addition, corn production is steadily expanding into less productive

regions around the world, where such intensive management may

not be possible due to climate, socioeconomic status, or

other barriers.

Crop plasticity is the ability of a crop genotype to express

contrasting phenotypes in an array of environmental conditions

(Laitinen and Nikoloski, 2019). Broadly, crop plasticity mechanisms

include source (carbon capture) and sink (carbon storage and

utilization) manipulations (Dingkuhn et al., 2020). Branching is a

common plasticity response, for example, increasing both the

source (leaf area) and sink (seed set) potential for a crop plant.

Although this phenotypic flexibility is beneficial to individual

plants, many modern agronomic crop management practices

favor intensification and target uniformity (Matesanz and Milla,

2018). These intensively managed, stabilized environments aim to

minimize plasticity expression, which may result in both positive

and negative outcomes (vonWettberg et al., 2020). Global interest is

mounting in crop plasticity mechanisms as breeders anticipate

potential impacts of climate change (Arnold et al., 2019;

Schneider and Lynch, 2020). Adaptation to rapidly changing

weather patterns and sporadic stress events may be facilitated by

plasticity mechanisms conserved in modern crop genetics (Nicotra

et al., 2010). The true utility of plasticity is uncertain in modern

agronomic settings, as the concept remains mostly theoretical and

untested under broad-scale field conditions (Brooker et al., 2022).

In addition, the benefit of plasticity at the field-level for relatively

determinate crops such as corn is less apparent than for crops such

as wheat and grain sorghum, which can be intentionally managed

for plastic capabilities via tillering.
02
Tillers are basal branches of grass crop species, appearing early

in plant development for annual crops (Kim et al., 2010b), and

further growing and developing in perennial species. As with any

plasticity trait, genotype is a strong regulator of tiller expression

(Doust, 2007; Laitinen and Nikoloski, 2019). With conducive

genotypes, tiller development is encouraged by an abundance of

resources and therefore may vary significantly on an individual

plant basis based on light, nutrient, or water availability –

commonly associated with plant density (Lafarge and Hammer,

2002; Markham and Stoltenberg, 2010). Nutrients key to tiller

development are phosphorus (P) and nitrogen (N), as deficiency

may prevent expression (Thorne and Wood, 1987; Longnecker

et al., 1993; Rodriguez et al., 1999). When soil factors are not

limiting, early-season weather conditions are key to tiller

development. The relationship between temperature and radiation

is commonly quantified via the photothermal quotient (PTQ),

which has been correlated to vegetative and reproductive crop

mechanisms (Angus et al., 1981; Fischer, 1985; Kim et al., 2010b;

Kumar et al., 2016). Within species, genotypes vary in tiller

fecundity, even for apparently unrestrictive conditions (Kim et al.,

2010a). Tillers can be fertile and develop identically to primary

shoots, although delayed in development, usually by a set

phyllochron interval (Nemoto et al., 1995). This cumulative age

discrepancy sets limitations for the number of tillers able to

successfully set seed, as abortion typically occurs in reverse

appearance order when resources become limiting over the course

of the growing season (Thorne and Wood, 1987). For tillers

emerging at opportune times and surviving through the season,

yield contributions can be significant in well-managed grains

(Lafarge and Hammer, 2002; Pasuquin et al., 2008).

Modern preferences of farmers and breeders alike commonly

mask tiller capacity in corn fields, although this plasticity

mechanism is conserved and situationally expressed (Moulia

et al., 1999; Duvick et al., 2004). Common factors promoting tiller

expression in corn are linked to plant density and are seasonal in

nature (Downey, 1972; Markham and Stoltenberg, 2010). Interplant

competition is minimized when plant density is reduced.

Intentional plant density reductions are employed by farmers to

match crop needs with limited resource availability, a pervasive

component of dryland corn production illustrated by Figure 1

(Roozeboom et al., 2007; Rotili et al., 2019). Unintentional plant

density reductions include poor plant establishment or early season

plant damage and death. In these situations, corn tillers may be
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expressed in row gaps or as a response to the released apical

dominance of a damaged primary shoot (Carter, 1995; Thapa

et al., 2018). Tillering in corn has historically lent itself to the

theory that expression (“suckering”) reduced yields (Dungan, 1931;

Earley et al., 1971). More recent studies have challenged this blanket

opinion (Veenstra et al., 2021; Rotili et al., 2022).

While past work has quantified the impact of tillers on corn

yield (Sangoi et al., 2009; Veenstra et al., 2021; Massigoge et al.,

2022), plastic capacity (Rotili et al., 2021a; Rotili et al., 2022), and

resource use (Thapa et al., 2018; Rotili et al., 2022), no substantial

effort has been made to quantify the predictability of corn tiller

presence in field scenarios. Corn yields were not reduced, but did

respond to varying levels of tiller density (i.e., tillers ha-1) in

previous work from the available database (Veenstra et al., 2021;

Veenstra et al., 2023a). In addition, water-soluble carbohydrate

reserves and plant C economy dynamics were altered by tiller

presence (Veenstra et al., 2023b). Therefore, accurately predicting

this plasticity behavior is relevant in the evaluation of corn

tillering utility. Plasticity quantification remains a broad

research gap, particularly in light of agronomic applications

(Sadras et al., 2013). Such a gap provides opportunity to

improve tools available to producers in marginal, variable, or

otherwise vulnerable growing environments and enhance

sustainability and resilience of these production systems.

Environmental drivers were strongly correlated with yield

responsiveness to tiller formation in Veenstra et al. (2021) and

Massigoge et al. (2022) and similar variables have been proposed

in a mechanistic framework for understanding this trait in corn

(Rotili et al., 2021b). Therefore, it follows that such data should be

useful in describing tiller densities at the field scale. Authors

hypothesized that corn tiller densities in tiller-prone genotypes

could be reliably predicted within 25% of the target plant density

(arbitrarily identified as a realistic management threshold) using

readily accessible variables related to crop management and

environment. Thus, the objectives of this study were as follows:

1) identify key environment, management, or combinations of

these variables useful for predicting tiller density dynamics in
Frontiers in Plant Science 03
corn; and 2) test out-of-season prediction accuracy for

identified variables.
2 Materials and methods

2.1 Field experiments

This study utilized data from 17 site-years of field experiments

across the state of Kansas, United States in the 2019 to 2021 seasons, as

previously described in Veenstra et al. (2021) and Table 1. At each site,

treatments were applied in a split-split-plot arrangement with a

randomized complete block design and replicated three or four times

depending on the site-year, as field space allowed. Whole plot was

assigned as plant density, with target levels 25000, 42000, and 60000

plants ha-1. These plant densities were selected as representative of low,

moderate, and high plant density targets for the U.S. Central High

Plains region of the United States (Roozeboom et al., 2007). Lower

plant densities were used to simulate suboptimal stands in good

environments and typical stands in restrictive dryland environments.

Sub-plot was assigned as genotype, with levels P0805AM and

P0657AM (Corteva Agriscience, Johnston, IA, USA). These

genotypes were selected for their modern release date, suitability for

the region and limited moisture production systems targeted, and

propensity to tiller. As genetic influence was not the main focus of the

study, two genotypes were deemed sufficient. Sub-sub-plot was

assigned as tiller presence, with levels “intact” or “removed”. For the

current study, only plots with undisturbed tillers were evaluated.

Additional information on plot care and size can be found in the

aforementioned article.

Morphology and phenology data were recorded in unique

sections (at least 1.2 m2) of buffered central plot rows throughout

the season in each study. Plant and tiller counts per area were taken

at V5 (fifth leaf; Ritchie et al., 1997), V10 (tenth leaf), V16 (sixteenth

leaf, 2019 and 2021), R3 (kernel milk stage, 2019 and 2021), and R6.

Crop phenology was noted at each collection to ensure timing was

on-target. Counts were scaled to plants ha-1 and tillers ha-1.
FIGURE 1

Corn planted in variable dryland environments (e.g., the U.S. High Plains and southwestern Argentinian Pampas regions) is often targeted at half the
optimum plant density used by more productive counterparts (e.g., the U.S. Corn Belt). This mitigation practice adapts corn production to restrictive
conditions and limited resources. However, tillering is more frequently observed at such low plant densities (< 50000 plants ha-1). The pictured field
in Colby, Kansas, is in a wheat-corn-fallow crop rotation, and averages ~375 mm of precipitation during the corn growing season. Around the world,
corn production is expanding into less conducive growing conditions. Understanding how to predict tiller development in these environments may
facilitate creation of more holistic decision tools for producers seeking to maximize efficiency of corn crops.
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TABLE 1 Site-year field experiment coordinates, sow date, tenth-leaf (V10) date, treatment structure (D, Density; G, Genotype; P, Tiller Presence), irrigation, previous crop, and soil characterization [pH, organic
matter (OM – loss on ignition), nitrate concentration (NO3-N), ammonium concentration (NH4-N), phosphorus (P – Mehlich), cation exchange capacity (CEC), and soil texture].

NH4-N P CEC Soil
Texture

g-1) (mg kg-1) Mehlich
(mg kg-1) (meq 100g-1)

1.3 37.5 5.9 Sandy Loam

0.0 42.0 15.8 Sandy Loam

2.1 52.1 18.2 Silt Loam

4.1 118.0 24.4
Silty Clay
Loam

4.8 24.0 23.1
Silty Clay
Loam

13.6 84.9 18.9 Clay Loam

10.7 55.0 10.6 Sandy Loam

17.9 106.0 24.0 Silt Loam

4.3 70.0 21.2 Silt Loam

36.4 31.0 24.0 Silt Loam

12.7 106.4 25.6 Silt Loam

7.8 13.3 22.3 Silt Loam

7.4 68.8 20.0 Loam

5.8 90.9 23.2 Loam

5.2 52.1 9.7 Sandy Loam

(Continued)
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Site-Year Latitude Longitude Sow
Date

V10
Date

Treatment
Structure Irrigation Previous

Crop pH OM NO3-

(°N) (°W) (H20)
%
(LOI) (mg

Manhattan
2019

39.14 96.64
May-
14

Jul-01 D x G x P None Corn 6.3 1.0 1.8

Garden City
2019

37.83 100.86
May-
04

Jun-
28

D x G x P*
Subsurface
limited

Corn 6.6 1.0 2.0

Goodland 2019 39.25 101.78
May-
14

Jul-08 D x G x P*
Subsurface
limited

Soybean 6.5 2.7 26.8

Keats 2020 39.23 96.72
May-
02

Jun-
24

D x G x P None Soybean 7.0 4.5 18.0

Buhler 2020 38.14 97.73
Apr-
29

Jun-
20

D x G
Subsurface
limited

Soybean 6.4 2.9 17.9

Greensburg
2020

37.58 99.37
May-
05

Jun-
24

D x G
Subsurface
limited

Corn 5.4 2.6 37.1

Garden City
2020

37.83 100.86
May-
18

Jun-
30

D x G x P
Subsurface
limited

Corn 5.2 1.6 18.4

Goodland 2020 39.25 101.78
May-
07

Jul-01 D x G x P
Subsurface
limited

Soybean 5.8 3.8 36.9

Colby A 2020 39.39 101.06
May-
07

Jul-03 D x G x P None Wheat 5.4 3.3 19.9

Colby B 2020 39.38 101.06
May-
15

Jul-03 D x G x P None Grain Sorghum 6.5 3.2 43.5

Keats 2021 39.23 96.72
Apr-
30

Jun-
22

D x G x P None Corn 6.6 6.2 23.3

Buhler 2021 38.14 97.73
May-
04

Jun-
25

D x G
Subsurface
limited

Corn 6.3 2.6 11.7

Greensburg
2021

37.58 99.37
May-
07

Jun-
25

D x G
Subsurface
limited

Corn 5.6 2.3 33.4

Selkirk 2021 38.70 101.54
May-
06

Jun-
30

D x G
Subsurface
limited

Field Bean 7.9 2.7 14.0

Garden City
2021

37.83 100.86
May-
13

Jun-
28

D x G x P
Subsurface
limited

Corn 5.5 1.6 14.2
N

k
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2.2 Environmental data and calculations

No soil fertility or moisture gradients (ex: irrigated versus

dryland) were established at the evaluated locations. Only field-

level soil and weather data were collected and evaluated. Soil type

and fertility were characterized for each site-year via early-season

soil sampling at 60-cm (NO3 and NH4) and 15-cm depths (all

others, Table 1). Weather data were obtained from the Climate

Engine web application for all desired geographic locations, using

coordinates and date ranges (Huntington et al., 2017). Soil bulk

density data were downloaded from the Web Soil Survey

application (Staff S.S., Service N.R.C. and Agriculture, U.S.D,

2022) and used to calculate nutrient values in kg ha-1. In total, 16

environmental variables were available for study, which were

grouped into 15 categories based on previous knowledge of

importance to tiller response (Veenstra et al., 2021), ease of

producer manipulation (i.e., management factors – including

plant density, amendable soil variables, and water as irrigation),

and field observations. All calculations, data transformation, and

analyses were conducted using program R (R Core Team, 2022).

All climate data considered the time period from planting to

date of observation, regardless of plant development stage. While

previous work has indicated critical periods for tiller appearance

(Moulia et al., 1999; Rotili et al., 2021b), authors wished to capture

seasonal trends that could impact tiller density through abortion as

well. Mechanistic relationships are not well-defined in this regard

(e.g., tiller abortion has been related to phenological progression,

but this could be more influenced by seasonal stress or soil water

depletion than plant development alone). Cumulative values

(additive from planting to field observation date) included

growing degree days (GDD), vapor pressure deficit (VPD), and

soil water supply. Daily GDD were calculated as the difference

between mean daily temperature and the crop base temperature of

10°C, with a forced daily maximum of 30°C. The VPD was included

as a proxy of crop stress in addition to temperature, provided in

kilopascals (kPa), and added over the specified date range. Soil

water supply included both precipitation and irrigation, when

applicable, with the season extended one month pre-sowing to

estimate soil moisture at planting. Daily minimum temperature,

daily maximum temperature, daily thermal amplitude, and

photothermal quotient (PTQ) were averaged over the assigned

period (planting to field observation). The PTQ is defined by

Fischer (1985) as the mean daily solar radiation for a selected

time period, divided by the difference between the mean

temperature for that period and the crop base temperature (10°

C), with final units megajoules (MJ) m-2°C-1 day-1.
2.3 Data analyses

2.3.1 Model specification, fit, and selection
In preparation for model fitting and evaluation, the complete

dataset (multiple sites, seasons, and development stages) was

divided into training and testing sets – 80% and 20% (4:1),

respectively. This split was selected as a compromise between
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maximizing the training dataset and maintaining the integrity of

both training and testing sets (Gholamy et al., 2018). These initial

sets had similar representation of all site-years, potential predictor

variables, and observed tiller densities (Figure 2). The training set

(80%) was utilized for model fitting (e.g., estimation of regression

coefficients). The testing set (20%) was sacrificed for model testing

only and reserved to evaluate the predictive accuracy and adequacy

of the model fit to the training set. This 4:1 model is henceforth

referred to as the “cross-season” fit.

The 15 different variable combinations selected as potential

predictors of tiller density are presented in Table 2. To facilitate

useful interpretation of interactions among non-categorical

variables, observed plant density was categorized into three

clusters based on target plant densities of 25000, 42000, and

60000 plants ha-1, of which realized densities were representative

(data not shown). These factor levels were utilized when plant

density was involved in interactions with at least one other
Frontiers in Plant Science 06
continuous variable. As generalized additive models require a

distribution representative of the response variable, we selected a

Binomial distribution for realization of tillers ha-1. Essentially, this

assumption allowed us to determine the probability (ranging from 0

to 1) of attaining a maximum potential tiller density ha-1 as the

response variable. The assumed maximum achievable tiller

expression at a field scale was based on findings of others (3

tillers plant-1; Major, 1977; Rotili et al., 2021a), and a realistic

maximized plant density of 100000 plants ha-1, as utilized in

previous plant density studies in the U.S. (Assefa et al., 2016).

The potential tiller density in our model was therefore 0 ≤ y ≤

300000 tillers ha-1, where y is the predicted tiller density expressed

as m × 300000 tillers ha-1, with m being the modeled probability of

attaining a maximized tiller density per area. Such a tiller density

has never been reported in the literature and is arguably not

achievable. The highest observed tiller density in this study was

152842 tillers ha-1 (mean of 0.8 tillers plant-1, with 2% of individual
B

C D

E F

G H

A

FIGURE 2

Observation frequency for key factors in dataset model splits. Y-axes indicate the observation frequency for each factor within a given dataset split.
Factors shown are based on the selected model structure (Supplementary Equation S1) and include cumulative growing degree days (GDD; A),
seasonal photothermal quotient (PTQ; B), mean minimum and maximum temperatures (C, D), cumulative vapor pressure deficit (VPD; E), soil nitrate
(F), soil phosphorus (G), and response variable tiller density (H). The left side of each panel demonstrates the cross-season 80% train (dark), 20% test
(light) dataset split. The right side of each panel demonstrates the seasonal variation of the out-of-season (-2019, dark; -2020, pale; -2021,
moderate) dataset splits.
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TABLE 2 Predictive factors included in tiller density model candidates.

G pH OM NO3 NH4 P CEC Sand Silt Clay

ts ha-1 % (LOI) (kg ha-1) (kg ha-1) (kg ha-1) (meq 100g-1) % % %

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓

✓

✓

✓ ✓ ✓

✓ ✓ ✓

l quotient; Tmin, mean daily minimum growing period temperature; Tmax, mean daily maximum growing period temperature; Tamp, mean daily
cumulative vapor pressure deficit; PD, observed plant density; pH, soil test pH; OM, soil test organic matter (percent loss on ignition); NO3, soil
rcent soil silt; Clay, percent soil clay. * PD classified into three factor levels (A, 25000 plants ha-1; B, 42000; C, 60000).
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Model Can-
didate

GDD PTQ Tmin Tmax Tamp CM VPD PD

°C
day MJ m−2°C−1 day−1 °C °C °C mm kPa plan

Full ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Temporal ✓ ✓

Weather ✓ ✓ ✓ ✓ ✓ ✓ ✓

Soil

E ✓ ✓ ✓ ✓ ✓ ✓

M ✓ ✓ ✓

Stress ✓ ✓ ✓ ✓

G + E ✓ ✓ ✓ ✓ ✓

G × E ✓ ✓ ✓ ✓ ✓

E + M ✓ ✓ ✓ ✓ ✓ ✓

E × M ✓ ✓ ✓ ✓ ✓ ✓*

G + M ✓

G × M ✓

G + E + M ✓ ✓ ✓ ✓ ✓ ✓

G × E × M ✓ ✓ ✓ ✓ ✓ ✓*

G, genotype; E, environment; M, management; GDD, cumulative growing degree days; PTQ, growing period phototherm
growing period thermal amplitude; CM, cumulative seasonal moisture (precipitation + irrigation, when applicable); VPD,
nitrate; NH4, soil ammonium; P, soil phosphorus; CEC, soil test cation exchange capacity; Sand, percent soil sand; Silt, p
a

e

https://doi.org/10.3389/fpls.2023.1223961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Veenstra et al. 10.3389/fpls.2023.1223961
observations > 3 tillers plant-1). The mean plant density in the

current study was 41295 plants ha-1, ranging from 17514 to

73807. A maximum tiller density at the field level determined

independently of present observations minimizes assumptions of

tiller responses to plant density, for example. Such responses have

been reported at the tillers plant-1 scale (Downey, 1972; Tetio-

Kagho and Gardner, 1988; Sangoi et al., 2009; Hansey and de Leon,

2011) but authors believe tiller density drivers at the field scale

(tillers ha-1) are too uncertain (Downey, 1972) to necessitate

constraints based on specific variables. All generalized additive

models were fit to the training set using the mgcv package with all

continuous variables set as flexible smoothed effects via thin-plate

regression splines (Wood, 2003). Limiting thresholds for each of the

selected variables were defined based on a 0.50 probability.

Predictive accuracy was evaluated by the mean absolute error

and mean bias error of out-of-sample predictions in the test set.

Smaller values of mean absolute error indicate increased predictive

accuracy. The flexible smooth effects (i.e., probability of achieving

maximum tiller densities) for predictor variables in the most

accurate model were independently plotted across the range of

corresponding observations.

2.3.2 Out-of-season evaluation
After the most accurate predictive model was identified for the

cross-season dataset, the same model structure was evaluated for

out-of-season predictive accuracy. The goal of such tests was to

determine strengths and weaknesses of the predictive model for in-

field agronomic applications in a new, untrained season. To test the

predictive accuracy of the model for one year (2019, for example),

the training dataset included only observations from the other two

years (in this case, 2020 and 2021). The splits for these sets (percent

train/percent test) were 80/20, 62/38, and 58/42 for 2019, 2020, and

2021, respectively. These fits are henceforth referred to as “out-of-

season” models.

To evaluate out-of-season model performance, predictive

accuracy for each site-year was determined as the difference

between the true tiller density and the corresponding point

prediction at the mean target plant density of 42000 plants ha-1

(representative of the true observed mean, 41295 plants ha-1). To

explore predictive error causation in each site-year, out-of-season

coefficient estimates were independently set to zero. Resulting mean

absolute error was calculated for each exclusion. The excluded

coefficient that most drastically reduced mean absolute error for a

given site-year was identified as the variable too heavily weighted

for the observed conditions in a given out-of-season fit.
3 Results

3.1 Model training and selection

Observation distributions in model training/testing splits for

cross-season and out-of-season datasets are shown in Figure 2.
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Observations were relatively similar for all sets with regard to

cumulative growing degree days (Figure 2A), seasonal

photothermal quotient (Figure 2B), mean minimum and

maximum temperatures (Figures 2C, D), cumulative vapor

pressure deficit (Figure 2E), and tiller density (Figure 2H).

Although NO3 (Figure 2F) and P (Figure 2G) observations were

similar between the cross-season sets, as expected, seasonal

variation was evident in the out-of-season sets.

The mean observed tiller density in the full dataset was 28781

tillers ha-1 and the mean observed plant density was 41295 plants

ha-1. Therefore, an acceptable error range across the dataset (< 25%

of the plant density) was < 10324 tillers ha-1. This error level was

selected as an arbitrarily significant margin that farmers could

meaningfully use to inform management practices. Considering

the 15 variable combinations, out-of-sample prediction mean

absolute error is presented for each model fit in Table 3. Models

including weather-based factors were consistently below the

targeted error threshold. The three most accurate models were

the simplified E × M (mean absolute error = 7776 tillers ha-1; mean

bias error = -38 tillers ha-1), the simplified G + E + M (mean

absolute error = 9050 tillers ha-1), and the full model (mean absolute

error = 9051 tillers ha-1). The simplified E × M model was selected

as the most appropriate (Supplementary Equation S1). Plant density

was the key management factor identified, and the most relevant

environmental factors were temperature- (GDD, PTQ, VPD, mean

minimum and maximum daily temperatures) and soil fertility-

related (NO3 and P).
TABLE 3 Prediction accuracy metrics for tiller density model candidates.

Model Candidate MAE (tillers ha-1)

Full 9051

Temporal 13908

Weather 9362

Soil 19560

E 9362

M 11377

Stress 10605

G + E * 9116

G × E * 9736

E + M * 9066

E × M * 7776

G + M * 22764

G × M * 23131

G + E + M * 9050

G × E × M * 10371
Lowest values for each distribution are shown in boldface type. MAE, mean absolute error of
cross-season, out-of-sample predictions for test data set (80% train, 20% test); E, environment;
M, management; G, genotype. *simplified to key parameters (selected to minimize MAE; see
Table 1).
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3.2 Independent predictor effects

Smoothed effects of predictor variables on maximum tiller

density probability are presented independently in Figure 3. It is

key to note that the greatest tiller density observed in the present

study was 152842 tillers ha-1. That is, even when a variable was

apparently non-limiting, other limiting variables prevented the

observed density from reaching the set theoretical maximum of

300000 tillers ha-1. Cumulative GDD had a consistent impact on

tiller probabilities across plant densities, with a clear threshold of >

200°C day identified as non-limiting (Figure 3A). The effect of

seasonal PTQ was steady across plant densities, with a non-limiting

threshold of > 1 MJ m-2 C-1 day-1 (Figure 3B). Non-limiting mean

minimum temperature thresholds were > 8°C for the 25000 plants ha-

1 target, < 9°C for 42000 plants ha-1, and < 17.5 but > 11°C for 60000

plants ha-1 (Figure 3C). Mean maximum temperature was

consistently non-limiting > 22°C for 25000 and 42000 pl ha-1 and
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> 26°C for 60000 pl ha-1 (Figure 3D). Cumulative VPD was limiting

below 20-30 kPa for all plant densities, but was also limiting to some

degree at higher values for the 42000 (200 kPa) and 60000 (150 kPa)

plants ha-1 targets (Figure 3E). Soil fertility impacts were less

consistent overall (Figures 3F, G). At 25000 pl ha-1, increasing kg

NO3 ha
-1 appeared to have detrimental impacts on tiller expression

beyond 200 kg ha-1, whereas P had a clearer minimum threshold of

100 kg ha-1. Tiller response was fairly stable across nutrient gradients

for both NO3 and P at 42000 pl ha-1. Highest values of NO3 and P

were the most limiting at 60000 pl ha-1, with the apparent NO3

threshold at 230 kg ha-1 and the P threshold at 150 kg ha-1. These

independently presented variables are correlated with each other,

with the most correlated associations (r > 0.7) as cumulative vapor

pressure deficit with cumulative growing degree days, mean

maximum with mean minimum temperature, mean maximum

temperature with cumulative vapor pressure deficit, and mean

temperatures with cumulative growing degree days (data not shown).
B

C D

E F

G

A

FIGURE 3

Independent smooth functions fitted to key environmental factors by target plant density. Y-axes indicate the model-generated probability of a
maximum tiller density observation (300000 tillers ha-1) across a range of potential factor levels. Probabilities for each variable level are shown with
points, and moving averages are indicated with lines. Factors shown include cumulative growing degree days (GDD; A), seasonal photothermal quotient
(PTQ; B), mean minimum and maximum temperatures (C, D), cumulative vapor pressure deficit (VPD; E), soil nitrate (F), and soil phosphorus (G).
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3.3 Out-of-season predictive accuracy

Out-of-season predictions and resulting accuracy are presented

in Figure 4. Overall, predictions for the -2021 and -2019 trained

models were most accurate. When calculated via the -2019

coefficient estimates, 2019 tiller density predictions ranged in

absolute error from 7211 to 23795 tillers ha-1, and averaged
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-16003 tillers ha-1 (Figure 4A). When calculated via the -2020

coefficient estimates, 2020 tiller density predictions ranged in

absolute error from 19574 to 280461 tillers ha-1, and averaged

+125553 tillers ha-1 (Figure 4B). When calculated via the -2021

coefficient estimates, 2021 tiller density predictions ranged in

absolute error from 2564 to 40372 tillers ha-1, and averaged -1544

tillers ha-1 (Figure 4C).
B

C

A

FIGURE 4

Predictions and predictive accuracy of out-of-season model fits (-2019, A; -2020, B; -2021, C) by site-year. As presented, “-2019” indicates the
model trained with 2020 and 2021 data but tested with 2019 data. Large points indicate true tiller density observations for a plant density of 42000
plants ha-1 at development stage R6 (physiological maturity). Small points indicate model-generated predictions for tiller density (also 42000 plants
ha-1 at stage R6). Error bars indicate the 0.95 quantile prediction interval. In-row text indicates the error of the point prediction compared to the
observed value for a given site-year.
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3.4 Out-of-season error evaluation

Prediction accuracy impacts of independent out-of-season

coefficient estimate removal are presented in Table 4. When select

out-of-season coefficient estimates were excluded, 59% of site-years

dropped below the reasonable error threshold of 10500 tillers ha-1

(25% of 42000 plants ha-1 target). The 2020 predictions were

responsible for 71% of the unacceptable error. Coefficients most

improperly weighted for 2019 sites were soil NO3 and mean

maximum temperatures. Coefficients most improperly weighted

for 2020 sites were growing degree days, soil P, soil NO3, and

photothermal quotient. The site-years most over-predicted by the

full model in 2020 had the highest and lowest observed NO3 and

P kg ha-1 in the collected dataset. Predictions for two 2020 sites

were most accurate with all coefficient estimates. Coefficients most

improperly weighted for 2021 sites were temporal and temperature-

related (vapor pressure deficit, growing degree days, minimum

temperature, and maximum temperature).
4 Discussion

From a diverse dataset of field experiments, this study presents

novel conclusions on the predictability of tiller densities in selected

modern corn genotypes. While recently published literature has

explored the general yield and reproductive outcomes of corn tiller

presence in modern farm management systems (Rotili et al., 2021a;

Veenstra et al., 2021; Massigoge et al., 2022; Rotili et al., 2022;
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Veenstra et al., 2023a; Veenstra et al., 2023b), no substantial effort

has been made to explore appearance and survival factors for corn

tiller densities. In an effort to fill this knowledge gap, G, E, and M

variables were evaluated in replicated, multi-season, state-wide field

trials in Kansas, U.S. These 17 site-years comprise an expansive

tiller-focused database which has offered numerous yield and

reproductive plasticity insights for corn management in the US

Central High Plains region (Veenstra et al., 2021). The expanse of

this dataset facilitates unique modelling approaches (e.g., GAMs)

not typically possible in traditional field experiments evaluated via

ANOVA and mixed models. The current study provides perspective

of tiller density drivers and out-of-season tiller density predictability

for selected corn genotypes in a range of environments,

management practices, and crop stages.

A key component for selected predictor variables is the

Sprengel-Liebig Law of the Minimum (van der Ploeg et al., 1999).

This foundation discloses that none of the insignificant parameters

were obviously limiting in any of the evaluated trials. If this

assumption is not met, model predictive accuracy may be

degraded. Moisture supply was not a significant factor, likely

because no evaluated environments were critically water-

restricted. Previous simulation work has indicated tiller

productivity response to water supply (Rotili et al., 2021a),

although presented data suggest water supply may be a factor

indirectly controlling tiller expression (via reduced photosynthetic

capacity, for example). Diverse, field-based data sets for model

training are imperative, as evidenced by the out-of-season

predictions and resulting error margins in the current study.
TABLE 4 Out-of-season error evaluation resulting from independent coefficient eliminations by site-year.

Model Location Full Error Lowest Error Zeroed Coefficient

-2019 Train,
2019 Test

Manhattan 7211 4099 VPD

Goodland 15003 5963 NO3

Garden City 23795 13366 Tmin

-2020 Train,
2020 Test

Keats 280461 10283 P

Greensburg 236793 56352 NO3

Goodland 39840 39840

Garden City 19574 19574

Colby B 272656 27344 PTQ

Colby A 42732 27631 P

Buhler 191106 1653 P

-2021 Train,
2021 Test

Selkirk 40372 9770 VPD

Keats 9477 7280 GDD

Greensburg 25012 11851 Tmin

Goodland 12594 6547 GDD

Garden City 12847 1058 Tmax

Colby A 19507 8579 GDD

Buhler 2564 912 VPD
VPD, cumulative vapor pressure deficit; GDD, cumulative growing degree days; PTQ, growing period photothermal quotient; Tmax, mean daily maximum growing period temperature; Tmin,
mean daily minimum growing period temperature; NO3, soil nitrate; P, soil phosphorus.
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Maximum temperature, temporal, and fertility coefficients were

most commonly overweighed in the out-of-season training data

sets, solidifying the observation that these factors are better

classified as benchmark indicators (e.g., minimum or maximum

for expression) than as tiller density drivers. Studies by Rodriguez

et al. (1999) indicated that P deficiency altered the wheat

phyllochron and subsequently reduced tiller emergence rate. In

addition, a greater diversity of genotypes could uncover alternate

tiller expression responses, as supported by previous work (Hansey

and de Leon, 2011).

Two main hypotheses are generally ascribed to tiller

development in corn – 1) tillering is regulated by red:far-red

ratios alone and/or 2) tillering is regulated by red:far-red ratios

and energy (sugars). Identified by previous work for corn and other

crop species, season timing, the PTQ, and thermal variables were

crucial predictive components for tiller densities. Corn tiller

initiation was found to follow the typical grass species delay of

one phyllochron from main shoot development (Moulia et al.,

1999) and has been previously described with thermal time (Rotili

et al., 2021b). Rotili et al. (2021b) presented data from Maddonni

et al. (2002), which began measurements at 500°C days. Tillers

plant-1 were as high as 0.5 for some initial values, indicating the

limiting value was < 500°C days. The red to far-red light ratio was

also key to tiller development in this study by Maddonni et al.

(2002). Kim et al. (2010b) indicated that grain sorghum tiller

appearance began between 150 and 250°C days and PTQ was a

useful indicator of tillering potential. These observations

correspond with the threshold of 200°C days identified here for

corn, as well as the importance of PTQ as a potentially limiting

factor in tiller expression. Related to this point, C economy is

commonly equated with tiller expression. However, C depletion was

not associated with reduced tiller densities in grain sorghum studies

by Lafarge and Hammer (2002). Plant density is likely the indirect

cause, as red:far red light quality is impacted by a fuller canopy

(Markham and Stoltenberg, 2010).

Plant density was the key management factor significantly

altering the outcome of tiller densities in the current study, as

previously reported for corn at the plant scale (Major, 1977; Tetio-

Kagho and Gardner, 1988; Hansey and de Leon, 2011; Rotili et al.,

2021b) and field scale (Downey, 1972). The factors most clearly

interacting with plant density in this study were VPD and

maximum temperature. Thorne and Wood (1987) observed

reduced tiller number with high temperatures in pre-kernel set

periods of wheat (a C3 species). In addition, greater radiation

encouraged tiller development, although onset of heat treatments

canceled out this effect at harvest (Thorne and Wood, 1987). The

current study identified a base threshold for high temperature

rather than an upper threshold (potentially attributed to the C4

nature of corn) and a base threshold for low temperatures. In

contrast to minimum temperatures, the increasing threshold for

maximum temperatures is consistent with the photosynthetic

response to temperature. For example, tiller expression can be

maximized at sub-optimal growing temperatures with low plant

densities, but greater temperatures, maximizing photosynthetic
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rates, are required to observe tillers in higher plant densities.

Cumulative VPD was associated with tiller expression as a base

threshold, likely due to the temporal nature of how this variable was

calculated. Considered as a stress index for this study, however, high

cumulative VPD captured tiller abortion responses not attributed to

growing degree days alone at 42000 and 60000 plants ha-1 densities.

Growth rates, integral to tillering responses in corn (Andrade et al.,

1999; Kamiji et al., 2011; Rotili et al., 2022), are negatively impacted

by high VPDs. Therefore, a lower ceiling in higher plant densities is

required to maintain growth per plant. The VPD is associated with

heterogeneity in corn phenology and yield, which could facilitate

plasticity in certain environments (Lobell and Azzari, 2017).

Additional work should be done to partial out plant growth rate

impacts on tiller expression, development, and dynamics of these to

explore physiological processes and improve crop models in

this regard.

Soil fertility, specifically NO3 and P, were significant to

predictive accuracy, as expected based on precedent in wheat

(Thorne and Wood, 1987; Rodriguez et al., 1999), rice (Alam

et al., 2009), and grain sorghum (van Oosterom et al., 2010).

Adequate P levels are crucial to hormonal branching responses in

plants, mitigating the apical dominance conferred by strigalactones

and promoting production of cytokinins (Yan et al., 2020).

Relationships and thresholds for soil fertility variables in tiller

expression probability were less apparent than for weather

factors, but these parameters are certainly important. Continued

corn tiller field studies should include fertility as a dosed treatment

factor to evaluate this response more formally with a factorial

design approach.

Although weather factors appear to be reliable tiller density

predictors, the utility of models dependent on future observations is

an important caveat. However, out-of-season data forecasting (i.e.,

weather) is the common scapegoat for prediction challenges. This study

clearly demonstrates the power of predictive distribution uncertainty,

as out-of-season prediction intervals for some site-years were quite

wide. Even if “reliable” data is available (i.e., observed in-season weather

and soil data), uncertainty remains high in our attempt to replicate

reality in biological systems. A diverse dataset is required to properly

train such prediction models. This is demonstrated by the error of an

appropriately trained model (Figure 4C) and the error reduction

following removal of certain coefficients (Table 4). In some cases,

such as the Goodland and Garden City sites in 2020, the growing

season may not have been well-represented by the training dataset.

Prediction error was not impacted by removal of a single coefficient,

and prediction intervals were quite wide. In both 2019 and 2021

seasons however, our error levels were quite reasonable. That is,

prediction of tiller expression at the field scale with limited in-field

measurements (and identification of critical drivers) is possible,

although some uncertainty in prediction of biological responses will

inevitably remain.

The key challenge moving forward in such studies is making

useful recommendations for stakeholders given the model-limited

clarity (Gneiting and Katzfuss, 2014; Raftery, 2016). Introducing

risk-reward perspectives of economics, environment, etc. may aid in
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generating such actionable decisions, but such ideals are difficult to

quantify and vary by individual (Williams and Hooten, 2016; Mase

et al., 2017; Komarek et al., 2020). These model predictions are

likely not useful to assist farmers with plant density selection based

on tiller expression for an upcoming season. However, in replant

situations, increased certainty with season progression may

generate an actionable prediction of tiller yield compensation

potential. Outcomes of this study are useful for in-season

diagnostics and concerns of year-to-year variation in tiller

densities. Identifying predictors and consequences of crop

plasticity improves understanding of how overlooked traits may

enhance the resilience of our agroecosystems (Sadras et al., 2013).

This is accomplished, in part, by providing clarity for resource use

and crop potential in dynamic growing climates (from both adverse

and favorable perspectives). While tillering has been identified as a

potential source of useful plasticity for corn, knowledge of factors

contributing to tiller productivity remains limited. Kernels from

ears on tillers are key to yield compensation of tillered corn

phenotypes (Massigoge et al., 2022; Rotili et al., 2022), but tiller

reproductive development is not well understood. Not all tillers may

equally contribute to plant productivity (Schaffner, 1930; Bonnett,

1948; Alofe and Schrader, 1975; Russelle et al., 1984).

The hypothesis put forth for this study “that tiller densities can

be reasonably predicted (i.e., within 25% of the target plant density)

via environmental factors” appears to be supported by our results.

Plant density, thermal parameters, and soil fertility were critical

components to achieving the lowest error in tiller density

prediction. The cross-season predictive accuracy of identified

models fell within the reasonable benchmark of < 25% observed

plants ha-1, although not all out-of-season fits performed equally.

Critical non-limiting thresholds for select environmental

parameters were apparent in coefficient estimates. Wide

prediction intervals highlighted the volatile nature of tiller

expression and model assumptions, but point predictions were

relatively good with sufficiently diverse training data. While useful

for early season diagnostic purposes, these models are limited in

forecast utility and should be coupled with appropriate decision

theory and risk assessments. Future studies should expand on tiller

density prediction by exploring how those tillers develop through

the season.
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