43 research outputs found

    Position-dependent diffusion of light in disordered waveguides

    Get PDF
    Diffusion has been widely used to describe a random walk of particles or waves, and it requires only one parameter -- the diffusion constant. For waves, however, diffusion is an approximation that disregards the possibility of interference. Anderson localization, which manifests itself through a vanishing diffusion coefficient in an infinite system, originates from constructive interference of waves traveling in loop trajectories -- pairs of time-reversed paths returning to the same point. In an open system of finite size, the return probability through such paths is reduced, particularly near the boundary where waves may escape. Based on this argument, the self-consistent theory of localization and the supersymmetric field theory predict that the diffusion coefficient varies spatially inside the system. A direct experimental observation of this effect is a challenge because it requires monitoring wave transport inside the system. Here, we fabricate two-dimensional photonic random media and probe position-dependent diffusion inside the sample from the third dimension. By varying the geometry of the system or the dissipation which also limits the size of loop trajectories, we are able to control the renormalization of the diffusion coefficient. This work shows the possibility of manipulating diffusion via the interplay of localization and dissipation.Comment: 24 pages, 6 figure

    Lasing in localized modes of a slow light photonic crystal waveguide

    Full text link
    We demonstrate lasing in GaAs photonic crystal waveguides with InAs quantum dots as gain medium. Structural disorder is present due to fabrication imperfection and causes multiple scat- tering of light and localization of light. Lasing modes with varying spatial extend are observed at random locations along the guide. Lasing frequencies are determined by the local structure and occur within a narrow frequency band which coincides with the slow light regime of the waveguide mode. The three-dimensional numerical simulation reveals that the main loss channel for lasing modes located away from the waveguide end is out-of-plane scattering by structural disorder.Comment: 8 pages, 4 figure

    Photoluminescence modification by high-order photonic band with abnormal dispersion in ZnO inverse opal

    Full text link
    We measured the angle- and polarization-resolved reflection and photoluminescence spectra of ZnO inverse opals. Significant enhancement of spontaneous emission is observed. The enhanced emission not only has good directionality but also can be linearly polarized. A detailed theoretical analysis and numerical simulation reveal that such enhancement is caused by the abnormal dispersion of a high-order photonic band. The frozen mode at a stationary inflection point of a dispersion curve can strongly modify the intensity, directionality and polarization of spontaneous emission.Comment: 22 pages, 11 figures, figures modified, references added, more explanation adde

    Photonic Band Gaps in 3D Network Structures with Short-range Order

    Full text link
    We present a systematic study of photonic band gaps (PBGs) in three-dimensional (3D) photonic amorphous structures (PAS) with short-range order. From calculations of the density of optical states (DOS) for PAS with different topologies, we find that tetrahedrally connected dielectric networks produce the largest isotropic PBGs. Local uniformity and tetrahedral order are essential to the formation of PBGs in PAS, in addition to short-range geometric order. This work demonstrates that it is possible to create broad, isotropic PBGs for vector light fields in 3D PAS without long-range order.Comment: 6 pages, 8 figure

    Double scattering of light from biophotonic nanostructures with short-range order

    Full text link
    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.Comment: 10 pages, 4 figure
    corecore