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We present direct experimental evidence for position-dependent diffusion in open random media. The
interference of light in time-reversed paths results in renormalization of the diffusion coefficient, which varies
spatially. To probe the wave transport inside the system, we fabricate two-dimensional disordered waveguides
and monitor the light intensity from the third dimension. Change the geometry of the system or dissipation
limits the size of the loop trajectories, allowing us to control the renormalization of the diffusion coefficient.
This work shows the possibility of manipulating wave diffusionvia the interplay of localization and dissipation.

DOI: 10.1103/PhysRevLett.112.023904 PACS numbers: 42.25.Dd, 42.25.Bs, 72.15.Rn

As first shown by Einstein in his theory of Brownian
motion, the diffusion equation describes the evolution of
the density of particles each undergoing a random walk [1].
The power of this approach is that it requires knowledge of
a single parameter, D, the diffusion coefficient, regardless
of the underlying microscopical mechanisms of transport.
If the spatial gradient of the particle density is not too large,
the particle flux is linearly proportional to the gradient, and
D is the coefficient. Diffusion is also applicable to waves
[2], but it ignores interference effects. When inelastic
scattering is negligible, most of the elastically scattered
waves have uncorrelated phases, and their interference is
averaged out. Nevertheless, a wave may return to a position
it has previously visited after a random walk, and there
always exists the time-reversed path which yields an
identical phase delay. Constructive interference of the
waves from the reversed loops increases the wave energy
density at the original position and decreases the flux,
giving the so-called weak localization effect [3]. This is the
basic mechanism for the suppression of wave diffusion,
which eventually leads to Anderson localization [4,5].
In the self-consistent theory of localization [6,7], the

diffusion coefficient D is renormalized, and the amount of
renormalization is proportional to the return probability of
waves via the looped paths [8]. In an open system of finite
size, the return probability is reduced because the longer
loops may reach the boundary where waves escape. Thus,
the renormalization of D depends on the system size.
Moreover, the chance of escape is higher near the boundary
where the renormalization of D is weaker. This means that
the value of D is no longer constant but varies spatially
[9–11]. In the presence of dissipation, the long loops are also
cut; thus, the renormalization of the diffusion coefficient
depends on the amount of dissipation in both infinite [12]
and finite open random media [13]. Furthermore, dissipation
introduces a length scale beyond which the wave will not

reach the boundary of the system, and the diffusion
coefficient becomes position independent [14,15].
Although the self-consistent theory of localization in

open random media has been invoked to interpret several
experiments [16–18], its key prediction of position-
dependent diffusion (PDD) has not been observed directly.
This is because it is difficult to probe wave transport inside
the system experimentally. In this Letter, we obtain direct
experimental evidence of PDD by analyzing the light that
escapes from the two-dimensional (2D) random structures
via out-of-plane scattering [19–21]. It is well known that
the diffusion coefficient can be modified by changing the
scattering properties of the randommedium. In contrast, we
demonstrate that it is possible to change local diffusion
without changing the properties of the disorder by varying
the geometry of the system or the dissipation (out-of-plane
scattering), which also limits the size of the loop trajecto-
ries. This is because PDD is caused by the nonlocal wave
interference effects that depend on the exact position of the
boundary. Our experiment confirms that renormalization of
the diffusion coefficient, which has long been considered as
a theoretical approach put forward by the self-consistent
theory [9,10] and the supersymmetric [11,15] theory to
treat localization effects, actually happens inside the
random media. It is an intrinsic wave phenomenon that
applies not only to electromagnetic waves but also to all
other waves such as acoustic waves and matter waves.
We designed and fabricated 2D disordered waveguide

structures in a 220 nm silicon layer on top of 3 μm buried
oxide. The patterns were written by electron beam lithog-
raphy and etched in an inductively coupled plasma reactive
ion etcher. As shown in the scanning electron microscope
(SEM) images in Fig. 1(a), the waveguide has sidewalls
made of periodic arrays of air holes. They possess a 2D
photonic band gap and provide optical confinement in the
plane of the waveguide. Light enters the waveguide from an
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open end and is incident onto a 2D array of air holes inside
the waveguide [22]. The random pattern of air holes causes
light to scatter while going through the waveguide. The
transport mean free path l is determined by the size and
density of the air holes. Light localization will occur if the
length of the random array L exceeds the localization length
ξ ¼ ðπ=2ÞNl, where N ¼ 2W=ðλ=neÞ is the number of
propagating modes in the waveguide, W is the waveguide
width, λ is the optical wavelength in vacuum, and ne is the
effective index of refraction of the randommedium. SinceN
scales linearly withW, ξ can be easily tuned by varying the
waveguide width without changing l or ne. Therefore, by
changing the waveguide geometry (L, W), we can reach
both the diffusion regime (l < L < ξ) and the localization
regime (L > ξ) [23,24]. Although there is no mobility edge
[18] in such a system, it is not essential for our goal of
observing PDD. The latter is the manifestation of the
developing localization effects in the system of finite size
L. Because of their reduced dimensionality, the dis-
orderedwaveguides are always localized in theL → ∞ limit.
In order to apply the self-consistent theory of localization

to the analysis of the experimental data below, we first
validate it with numerical simulations under conditions
close to those in the experiment. In general, the diffusion
coefficient D depends not only on the longitudinal coor-
dinate z but also on the transverse coordinate y. For all our
samples, we set the waveguide widthW much less than the
localization length ξ, so that the transverse variation of D
can be neglected. Therefore, DðzÞ, which depends only on
z, describes the longitudinal evolution of the intensity
averaged over the cross section of the waveguide.

We computed the PDD coefficient without making any
assumption about the nature or strength of wave interfer-
ence [22]. Figure 2 plots the calculatedDðzÞ=D0 (the lower
dashed line) for L=ξ ¼ 3.0, where D0 is the diffusion
coefficient without renormalization. The z axis is parallel to
the waveguide, and the random array extends from z ¼ 0 to
z ¼ L. The renormalized DðzÞ drops to 0.17D0 in the
middle of the random waveguide (z ¼ L=2). Using the self-
consistent theory of localization [13], we calculate
DðzÞ=D0 (the lower solid line in Fig. 2), and it is in
excellent agreement with the ab initio simulation without
any fitting parameters. Previous theoretical studies show
[13,25] that further into the localization regime where
resonant tunneling dominates wave transport, the self-
consistent theory of localization underestimates the energy
density inside the random system that is strongly affected
by the presence of single-localized and necklace states [26].
In our experiment, we keep L ≤ 3ξ so that the self-
consistent theory of localization holds (as confirmed
numerically in Fig. 2).
Another factor we need to consider is the dissipation of

light in the random waveguide [27]. The wavelength range
of the probe is chosen such that the light absorption by
silicon or silica is negligible. Hence, light scattering out of
the waveguide plane by the random array of air holes is the
dominant loss mechanism. Such scattering allows us to

FIG. 1. Tilt-view SEM image of a disordered waveguide
fabricated in a silicon membrane on top of silica. The two
sidewalls of the waveguide consist of triangular lattices of air
holes (lattice constant 440 nm, hole radius 154 nm). They possess
a 2D photonic band gap and behave like reflecting walls for light
incident from all angles in the waveguide. The probe light (in the
wavelength range of 1500–1520 nm) is coupled from a silicon
ridge waveguide to an empty photonic crystal waveguide then
impinged onto a random array of air holes (hole diameter 100 nm
and areal density 6%) inside the waveguide.
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FIG. 2 (color online). Numerically calculated diffusion coef-
ficient DðzÞ (dashed curves) for 0 < z < L in a waveguide filled
with randomly positioned scatterers. The waveguide has length
L ¼ 3ξ (ξ is the localization length) and supports N ¼ 10modes.
The solid curves represent the prediction of the self-consistent
theory of localization. D0 denotes the diffusion coefficient that
ignores interference effects. In the absence of dissipation (dif-
fusive dissipation length ξa0 ¼ ∞), DðzÞ drops to a minimum of
0.17D0 in the middle of the waveguide. With the addition of
dissipation (ξa0=ξ ¼ 0.45), DðzÞ exhibits a plateau for
ξa0 < z < L − ξa0, and its value Dp is determined by the ratio
ξa0=ξ.
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study the effect of PDD by monitoring the intensity
distribution inside the system from the vertical direction.
However, we need to address the question whether the out-
of-plane scattering can be treated as incoherent dissipation
in our simulations. In a random array of scatterers, the
fields are correlated [28,29] only within a distance on the
order of one transport mean free path l, and waves from
different coherent regions of size l × l have uncorrelated
phases. Since there is a large number of such coherence
regions l × l in the random waveguide of size W × L, the
overall leakage may be considered incoherent and, thus,
treated effectively as material absorption.
To illustrate the effect of dissipation on PDD, we perform

numerical simulations. The diffusive dissipation length in
the random system is ξa0 ¼

ffiffiffiffiffiffiffiffiffiffi

D0τa
p

, where τa is the ballistic
dissipation time. When ξa0 becomes smaller than the
localization length ξ, the effect of dissipation is significant.
Figure 2 plots the calculated DðzÞ=D0 in the random
waveguide with ξa0=ξ ¼ 0.45 (the upper dashed line) in
comparison to that with ξa0 ¼ ∞ (no dissipation). The
suppression of diffusion is weakened by the dissipation,
and a plateau for the renormalized diffusion coefficient is
developed inside the disordered system. This result can be
understood as follows. Dissipation suppresses the feedback
from long propagation paths, limiting the effective size of
the system [30] to the order of the diffusive dissipation
length for any position that is more than one ξa0 away from
the open boundary (ξa0 < z < L − ξa0) [14,15]. Thus, the
renormalized D reaches a constant value equal to that of an
open system of dimension ∼2ξa ¼ 2

ffiffiffiffiffiffiffiffi

Dτa
p

. In the remain-
ing regions that are within one ξa0 to the boundary (z < ξa0
and L − z < ξa0), the diffusion coefficient is still position
dependent due to leakage through the boundary, and D
increases toward the value ofD0. We note that the extent of
these regions ξa0 is much greater than the transport mean
free path l. The latter determines the boundary region
where the diffusion approximation is not accurate even
without wave interference [31]. Figure 2 also shows the
prediction of the self-consistent theory of localization in the
presence of dissipation (the upper solid line), and it agrees
well with the numerical result.
The planar waveguide geometry we use is well suited for

studying the effect of PDD. It allows a precise fabrication
of the desired system using lithography so that the
parameters such as the transport mean free path can be
accurately controlled. The localization length ξ ∝ W can be
varied by changing the waveguide width, while the dif-
fusive dissipation length ξa0 remains fixed. This allows us
to separate the effects of localization and dissipation by
testing waveguides of different width. Unlike 2D random
systems [21], the additional confinement of light by the
waveguide sidewalls makes ξ scale linearly with l. Even if
scattering is relatively weak (kl ≫ 1, where k is the wave
number), the waveguide length L can easily exceed ξ so
that the localization effect is strong enough to modify the

diffusion. Instead of designing the disorder to maximize
scattering (minimizing kl), we deliberately lower the
density of the air holes to mitigate the out-of-plane
scattering loss and maximize the ratio ξa0=ξ.
Experimentally, a continuous-wave beam from a wave-

length-tunable laser (HP 8168F) was coupled to the wave-
guide through a single-mode polarization-maintaining
lensed fiber. The transverse-electric polarization (electric
field in the plane of the waveguide) of the incident light was
chosen. A near-field optical image of the spatial distribu-
tion of light intensity across the structure surface was
taken by collecting light scattered out of plane using a
50X objective lens (numerical aperture 0.42) and recorded
by an InGaAs camera (Xenics Xeva 1.7-320) [22]. The
intensity was integrated over the cross section of the
waveguide to obtain the evolution IðzÞ along the wave-
guide (parallel to the z axis). For each configuration
(width W, length L, transport mean free path l) of the
disordered waveguides, IðzÞ was averaged over two ran-
dom realizations of air holes and 50 input wavelengths
equally spaced between 1500 and 1520 nm. The wave-
length spacing was chosen to produce independent inten-
sity distributions.
Figure 3(a) shows the measured IðzÞ inside the random

waveguides of W varying from 60 to 5 μm (blue solid
lines). All other parameters are kept the same, L is fixed at
80 μm, the diameter of the air holes is 100 nm, and the
average (center-to-center) distance of the adjacent holes is
390 nm. l and ξa0 are obtained by fitting the least localized
sample, W ¼ 60 μm (longest ξ), with the self-consistent
theory of localization (red dashed line) [22]. We find that
l ¼ 2.2� 0.1 μm and ξa0 ¼ 30� 0.5 μm. With the
parameters found from the W ¼ 60 μm sample, the self-
consistent theory of localization successfully predicts the
decay for IðzÞ in all other samples with W ¼ 40, 20, 10,
5 μm (red solid lines). We stress that the excellent agree-
ment with the experimental data is obtained without any
free parameter except for the vertical intensity scale. The
PDD coefficients DðzÞ corresponding to the red curves in
Fig. 3(a) are shown in Fig. 3(b). We can clearly see that the
diffusion coefficient is reduced inside the sample, and its
value varies along z. Farther away from the open boundary,
D has a smaller value. In the narrower waveguides, the
reduction of D is larger due to the stronger localization
effect. In the most localized sample of W ¼ 5 μm, D is
reduced to 0.65D0 at z ¼ L=2. In an attempt to further
reduce D, we double the length of the random system L to
160 μm. As shown in Figs. 3(c) and 3(d) for W ¼ 5 μm,
the minimal D no longer decreases; instead, it saturates in
the middle of the random waveguide. This behavior is
attributed to dissipation which suppresses localization. As
the system length L becomes much larger than the diffusive
dissipation length ξa0,DðzÞ saturates to a constant valueDp
inside the disordered waveguide, similar to the simulation
result shown in Fig. 2.
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Finally, we exploit the interplay between dissipation and
localization to tune the saturated value of the diffusion
coefficient inside the random system. To this end, we
increase the density of scatterers to reach the deep saturation
region ξa0 ≪ L. In the second set of samples, the diameter of
the air holes is 150 nm, and the average distance between the
adjacent holes is 370 nm. The waveguide length L is set at
80 μm, and W varies from 5 to 60 μm. The experimental
data of the measured intensity IðzÞ inside the random
waveguides are presented in Fig. 4(a). Using the same
procedure described earlier, we obtain the values of DðzÞ
shown in Fig. 4(b). Because of stronger scattering (smaller
l) and larger out-of-plane loss (shorter ξa0),DðzÞ for all five
samples displays a well-developed plateau inside the sample.
The saturated value of Dp decreases with W—the narrower
waveguide has a smaller Dp. Hence, without changing the
disorder or altering the dissipation rate, we can control the
diffusion inside a random system by merely varying its
geometry (W, in this case).

In summary, we presented the direct experimental
evidence of position-dependent suppressed diffusion of
light inside the random systems. By varying the size and
shape of the random system, we were able to manipulate
the degree of renormalization of D. We also showed that
the presence of dissipation prevents D from approaching
zero and sets a limit for the minimal value of the
renormalized diffusion constant that can be reached by
the localization corrections. Such effect of dissipation is
expected to be similar to that of dephasing in the electronic
systems [32].

We are indebted to Patrick Sebbah and Shivakiran
Bhaktha for their insight in selecting the experimental
geometry. We acknowledge Seng Fatt Liew, Douglas
Stone, Arthur Goetschy, Boris Shapiro, and Sergey
Skipetrov for useful discussions. We also thank Michael
Rooks for suggestions regarding sample fabrication.
This work was supported by the National Science
Foundation under Grants No. DMR-1205307, No.
DMR-1205223, and No. ECCS-1128542. Computational
resources were provided under the Extreme Science
and Engineering Discovery Environment (XSEDE)
Grant No. DMR-100030. Facilities use was supported by
YINQE and NSF MRSEC Grant No. DMR-1119826.

FIG. 3 (color online). (a) Experimentally measured light inten-
sity IðzÞ inside random waveguides of different width W and
constant length L ¼ 80 μm (blue solid lines). The curves are
vertically shifted for a clear view. l ¼ 2.2 μm and ξa0 ¼ 30 μm
are foundby fitting theW ¼ 60 μmsamplewith the self-consistent
theory of localization (red dashed line). With these parameters,
the self-consistent theory of localization predicts IðzÞ for other
samples of W ¼ 40, 20, 10, 5 μm (red solid curves), which
agrees well with the experimental data. (b) Position-dependent
diffusion coefficients for the five samples in (a). (c) Experimentally
measured IðzÞ of twowaveguides with the samewidthW ¼ 5 μm
but different lengths, L ¼ 80, 160 μm (blue solid curves). Red
solid curves represent the prediction of the self-consistent theory
of localization using the same values of l and ξa0 as in (a).
(d) Diffusion coefficientsDðzÞ for the two samples in (c) showing
the saturation of D inside the longer sample L ¼ 160 μm.

FIG. 4 (color online). Tuning the diffusion coefficient via the
interplay of localization and dissipation. (a) Experimentally
measured light intensity IðzÞ inside random waveguides in the
deep saturation regime ξa0 ≪ L (blue solid lines). The curves are
vertically offset for a clear view. The length and width of the
waveguides are given in the graph. l ¼ 1.0 μm and ξa0 ¼ 13 μm
are found by fitting the W ¼ 60 μm sample with the self-
consistent theory of localization (red dashed line). These values
are then used to predict IðzÞ for other samples W ¼ 40, 20, 10,
5 μm (red solid curves), which is in good agreement with
the experimental data with no fitting parameters except the
vertical intensity scale. (b) Diffusion coefficients DðzÞ for all
samples in (a) are saturated in the region ξa0 < z < L − ξa0.
(c) The saturated value of the diffusion coefficient Dp from
(b) uniformly decreases with the decrease of the waveguide
width.
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