175 research outputs found

    Controlling chaos in diluted networks with continuous neurons

    Full text link
    Diluted neural networks with continuous neurons and nonmonotonic transfer function are studied, with both fixed and dynamic synapses. A noisy stimulus with periodic variance results in a mechanism for controlling chaos in neural systems with fixed synapses: a proper amount of external perturbation forces the system to behave periodically with the same period as the stimulus.Comment: 11 pages, 8 figure

    Dynamical TAP approach to mean field glassy systems

    Full text link
    The Thouless, Anderson, Palmer (TAP) approach to thermodynamics of mean field spin-glasses is generalised to dynamics. A method to compute the dynamical TAP equations is developed and applied to the p-spin spherical model. In this context we show to what extent the dynamics can be represented as an evolution in the free energy landscape. In particular the relationship between the long-time dynamics and the local properties of the free energy landscape shows up explicitly within this approach. Conversely, by an instantaneous normal modes analysis we show that the local properties of the energy landscape seen by the system during its dynamical evolution do not change qualitatively at the dynamical transition.Comment: final version, 21 pages, 1 eps figur

    Damage spreading transition in glasses: a probe for the ruggedness of the configurational landscape

    Get PDF
    We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of meta-stable states. For systems evolving under identical but arbitrarily correlated noises we demonstrate that there exists a critical temperature T0T_0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high-temperatures being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations we show that the asymptotic damage has the good properties of an dynamical order parameter such as: 1) Independence on the initial damage; 2) Independence on the class of initial condition and 3) Stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as meta-stable states) in the thermodynamic limit consequence of the ruggedness of the free energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading a interesting tool to probe the ruggedness of the configurational landscape.Comment: 25 pages, 13 postscript figures. Paper extended to include cross-correlation

    Section E6.1–6.4 of the ACMG technical standards and guidelines: chromosome studies of neoplastic blood and bone marrow–acquired chromosomal abnormalities

    Get PDF
    DISCLAIMER: These American College of Medical Genetics and Genomics standards and guidelines are developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily ensure a successful medical outcome. These standards and guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these standards and guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Cytogenetic analyses of hematological neoplasms are performed to detect and characterize clonal chromosomal abnormalities that have important diagnostic, prognostic, and therapeutic implications. At the time of diagnosis, cytogenetic abnormalities assist in the diagnosis of such disorders and can provide important prognostic information. At the time of relapse, cytogenetic analysis can be used to confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the standards and guidelines applicable to chromosome studies of neoplastic blood and bone marrow-acquired chromosomal abnormalities. This updated Section E6.1-6.4 has been incorporated into and supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the 2009 Edition (Revised 01/2010), American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories.Genet Med 18 6, 635-642

    Identification of Networks of Co-Occurring, Tumor-Related DNA Copy Number Changes Using a Genome-Wide Scoring Approach

    Get PDF
    Tumorigenesis is a multi-step process in which normal cells transform into malignant tumors following the accumulation of genetic mutations that enable them to evade the growth control checkpoints that would normally suppress their growth or result in apoptosis. It is therefore important to identify those combinations of mutations that collaborate in cancer development and progression. DNA copy number alterations (CNAs) are one of the ways in which cancer genes are deregulated in tumor cells. We hypothesized that synergistic interactions between cancer genes might be identified by looking for regions of co-occurring gain and/or loss. To this end we developed a scoring framework to separate truly co-occurring aberrations from passenger mutations and dominant single signals present in the data. The resulting regions of high co-occurrence can be investigated for between-region functional interactions. Analysis of high-resolution DNA copy number data from a panel of 95 hematological tumor cell lines correctly identified co-occurring recombinations at the T-cell receptor and immunoglobulin loci in T- and B-cell malignancies, respectively, showing that we can recover truly co-occurring genomic alterations. In addition, our analysis revealed networks of co-occurring genomic losses and gains that are enriched for cancer genes. These networks are also highly enriched for functional relationships between genes. We further examine sub-networks of these networks, core networks, which contain many known cancer genes. The core network for co-occurring DNA losses we find seems to be independent of the canonical cancer genes within the network. Our findings suggest that large-scale, low-intensity copy number alterations may be an important feature of cancer development or maintenance by affecting gene dosage of a large interconnected network of functionally related genes

    Precancerous Stem Cells Have the Potential for both Benign and Malignant Differentiation

    Get PDF
    Cancer stem cells (CSCs) have been identified in hematopoietic and solid tumors. However, their precursors—namely, precancerous stem cells (pCSCs) —have not been characterized. Here we experimentally define the pCSCs that have the potential for both benign and malignant differentiation, depending on environmental cues. While clonal pCSCs can develop into various types of tissue cells in immunocompetent mice without developing into cancer, they often develop, however, into leukemic or solid cancers composed of various types of cancer cells in immunodeficient mice. The progress of the pCSCs to cancers is associated with the up-regulation of c-kit and Sca-1, as well as with lineage markers. Mechanistically, the pCSCs are regulated by the PIWI/AGO family gene called piwil2. Our results provide clear evidence that a single clone of pCSCs has the potential for both benign and malignant differentiation, depending on the environmental cues. We anticipate pCSCs to be a novel target for the early detection, prevention, and therapy of cancers

    Geo Risk Management Results for a Public Client Organization

    No full text
    Rijkswaterstaat is the executive agency of the Ministry of Infrastructure and the Environment, responsible for development and maintenance of the Dutch main road network, main waterway network and main water systems. Managing and realizing these networks, not only within time, budget, safety margins and quality standards, but also with a minimum of public inconvenience during construction, are key success factors. In this respect subsoil conditions imply great risks and therefore are of major importance. For these reasons Rijkswaterstaat initiated the Dutch Geo-Impuls program for reducing geotechnical failure. This joint industry programme aims to strengthen the geotechnical community by substantially reducing geotechnical failures in all types of construction projects. It started in 2009 and was completed in 2015. All of the more than 40 Geo-Impuls participants embraced Geotechnical Risk Management (GeoRM) as the preferred geotechnical working method. Parallel to, and in close cooperation with, the evolvements within the Geo-Impuls program, Rijkswaterstaat developed its own processes and practices, keeping Geotechnical Risk Management (GeoRM) and its associated GeoPrinciples in mind. Our paper for the ISGSR2013 addressed the implementation of GeoRM working methods in the organization. This paper aims to provide an overview of the unique set of GeoRM tooling that has been developed within RWS. These tools include an organization specific GeoRM guideline, which entirely fits the existing project management approach, the so-called Geo Project Sieve for quickly assessing and addressing the geotechnical risk profile of a new infrastructure projects. And furthermore an approach for risk-driven quality assurance and control after contract award, during design as well as construction of infrastructure projects. In addition to the descriptions of these tools, this paper gives specific attention to the results and benefits of the application of tool-supported GeoRM in a number of projects of RWS. It also addresses several activities that were carried out to implement GeoRM within the internal organisation. The results contribute for example to better cooperation between contract partners, in-time assessment and control of geotechnical risks, and therefore improved control of costs, time, and quality of services and civil works
    • …
    corecore