125 research outputs found

    Annual Report 2014 - Institute of Ion Beam Physics and Materials Research

    Get PDF
    This past year 2014 was the year when we finally completely arrived as a “full member” in the Helmholtz Association. This is related to the successfully passed research evaluation in the framework of the Program Oriented Funding (POF), which will give us a stable and predictable funding for the next five years (2015 – 2019). This is particularly true for our large-scale user facilities, like the Ion Beam Center (IBC) and the electron accelerator ELBE with the free-electron laser. Most of our activities are assigned to the program “From Matter to Materials and Life” within the research area “Matter”, in cooperation with several other German Helmholtz Centers. Our in-house research is performed in three so-called research themes, as depicted in the schematic below. What is missing there for simplicity is a small part of our activities in the program “Nuclear Waste Management and Safety” within the research area “Energy”. Our research and facilities were well appreciated by the evaluation committee, who made the following judgement about the Ion Beam Center: “The Ion Beam Centre (IBC) of HZDR is an internationally leading ion-beam facility (with ion energies ranging from several eV to several tens of MeV). At both the national and international level it is one of the key players and is unique in its kind. The synergy between forefront research and user service has been leading to a very good publication output for both in-house research and user research. … The very broad range of beam energies, the versatility of techniques and applications – both for ion beam modification of materials and for ion-beam analysis – makes the IBC unique in its kind. … The strength of IBC is that its activities are based on a combination of forefront research and user service, which mutually interact in synergy and strengthen one another. In turn, this synergy has been leading to a very good publication output for both in-house research and user research.” In order to make our Annual Report a bit more compact, we have decided to include only four full journal papers this year. This was also triggered by the fact that our publication activities have turned out be become more diverse, in more diverse journals than in the past, and often through longer papers, which would be too long to reprint them here. However, apart from the constantly quantitatively high publication output, we succeeded to publish in excellent journals such as Nature Physics, Nano Letters and Physical Review Letters, in fields as diverse as ion beam physics, magnetism and terahertz spectroscopy. Two of our scientists, Dr. Artur Erbe and Dr. Alexej Pashkin obtained their Habilitation in 2014, both at University of Konstanz. For the first time, we are hosting an Emmy Noether Young Investigator Group funded by the Deutsche Forschungsgemeinschaft (DFG); the group works on the hot topic of magnonics and is headed by Dr. Helmut Schultheiß. Finally we would like to cordially thank all partners, friends, and organizations who supported our progress in 2014. Special thanks are due to the Executive Board of the Helmholtz-Zentrum Dresden-Rossendorf, the Minister of Science and Arts of the Free State of Saxony, and the Minister of Education and Research of the Federal Government of Germany. Numerous partners from universities, industry and research institutes all around the world contributed essentially, and play a crucial role for the further development of the institute. Last but not least, the directors would like to thank again all IIM staff for their efforts and excellent contributions in 2014

    Optical study of superconducting Ga-rich layers in silicon

    Full text link
    We performed phase-sensitive terahertz (0.12 - 1.2 THz) transmission measurements of Ga-enriched layers in silicon. Below the superconducting transition, T_{c} = 6.7 K, we find clear signatures of the formation of a superconducting condensate and of the opening of an energy gap in the optical spectra. The London penetration depth, \lambda(T), and the condensate density, n_{s} = \lambda^{2} 0)/\lambda^{2}(T), as functions of temperature demonstrate behavior, typical for conventional superconductors with \lambda(0) = 1.8 \mu m. The terahertz spectra can be well described within the framework of Eliashberg theory with strong electron-phonon coupling: the zero-temperature energy gap is 2\Delta(0) = 2.64 meV and 2\Delta(0)/k_{B}T_{c} = 4.6 \pm 0.1, consistent with the amorphous state of Ga. At temperatures just above T_{c}, the optical spectra demonstrate Drude behavior.Comment: 5 pages, 4 figure

    Annual Report 2009 - Institute of Ion Beam Physics and Materials Research

    Get PDF
    The Institute of Ion Beam Physics and Materials Research (IIM) is one of the six institutes of the Forschungszentrum Dresden-Rossendorf (FZD), and contributes the largest part to its Research Program \"Advanced Materials\", mainly in the fields of semiconductor physics and materials research using ion beams. The institute operates a national and international Ion Beam Center, which, in addition to its own scientific activities, makes available fast ion technologies to universities, other research institutes, and industry. Parts of its activities are also dedicated to exploit the infrared/THz free-electron laser at the 40 MeV superconducting electron accelerator ELBE for condensed matter research. For both facilities the institute holds EU grants for funding access of external users

    A comparison of the magnetic properties of Proton- and Iron-implanted graphite

    Full text link
    In this work we have investigated the changes of the magnetic properties of highly oriented pyrolytic graphite samples after irradiation either with 3×1014\sim 3 \times 10^{14} protons or 3.5×1013...3.5×1014 3.5 \times 10^{13} ... 3.5 \times 10^{14} iron ions with energies in the MeV range. Our results show that iron and proton irradiations can produce similar paramagnetic contributions depending on the implantation temperature. However, only protons induce a ferromagnetic effect.Comment: 4 pages with three figures. To be published in EPJ

    Peripheral Ameloblastoma: A Case Report and Review of Literature

    Get PDF
    Peripheral ameloblastoma, a rare and unusual variant of odontogenic tumour, comprises about 2–10% of all ameloblastomas. The extraosseous location is the peculiar feature of this type of tumour, which is otherwise similar to the classical ameloblastoma. This paper describes a case of peripheral ameloblastoma in a 67-year-old female affecting the lingual alveolar mucosa of the mandibular 32–34 region which was clinically diagnosed as pyogenic granuloma. This paper becomes important due to availability of all data, makeing it a well-documented case

    Annual Report 2012 - Institute of Ion Beam Physics and Materials Research

    Get PDF
    In 2012 the HZDR, and in consequence also the Institute of Ion Beam Physics and Materials Research (IIM) including its Ion Beam Center (IBC), has undergone a scientific evaluation. The evaluation committee composed of the Scientific Advisory Board and numerous external experts in our field of research concluded that “the overall quality of the scientific work is excellent”, that “there are an impressive number of young scientists working enthusiastically on a variety of high-level projects” and that “the choice of these projects represents a clear underlying strategy and vision”. We feel honored and are proud that the external view on our scientific achievements is that extraordinary. In view of this outstanding result we would like to express our gratitude to all our staff members for their commitment and efforts! In the past year, we continued our integration into the Helmholtz Association of German Research Centers (HGF) with our Institute mostly active in the research area “Matter”, but also involved in a number of activities in the research area “Energy”. In this respect, many consultations were held with the Helmholtz centers contributing to common research areas to precisely define the role we will play in the newly established HGF program “From Matter to Materials and Life” (see schematic below). Our IBC has been recognized as a large-scale user facility for ion beam analysis and modification of materials, i.e., specializing on materials science. In particular, the IBC plays a prominent role in the recently approved Helmholtz Energy Materials Characterization Platform (HEMCP), which mainly concentrates on the development of dedicated analytical tools for the characterization of materials required for future energy technologies. The successes achieved by the IBC allows us to invest 7200 k€ to further improve and strengthen the ion beam capabilities at the Institute. In addition to this infrastructure-related grant, we were also successful in our funding application for the establishment of the International Helmholtz Research School for Nanoelectronic Networks (IHRS NANONET), aiming at promoting the next generation of leading scientists in the field of nanoelectronics. The IHRS NANONET is coordinated by our Institute and offers a well-structured PhD program to outstanding students of all nationalities with emphasis on interdisciplinary research and comprehensive training in technical and professional skills
    corecore