3,680 research outputs found
Early appearance of 2, 3-butanediol in acute myocardial infarction. A new marker for ischaemia?
In 28 patients with acute myocardial infarction, the release pattern of 2, 3-butanediol (BD), a product of intermediary metabolism, and creatine kinase activity (CK) in blood were compared. Whereas CKat entry was low in all patients, the BD level was elevated in 18 (64%). However, BD returned to normal levels during the next 24 h whereas CK increased. The BD level at entry did not allow differentiation between patients with transmural or non-transmural infarction; it was independent of clinical findings and biochemical parameters. We suggest that, in patients with acute myocardial infarction, elevated levels of BD originates from myo-cardial metabolism. Whether it reflects ongoing ischaemia or reperfusion of the infarcted area remains unresolve
Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1)
We present energy filtered electron emission spectromicroscopy with spatial
and wave-vector resolution on few layer epitaxial graphene on SiC$(000-1) grown
by furnace annealing. Low energy electron microscopy shows that more than 80%
of the sample is covered by 2-3 graphene layers. C1s spectromicroscopy provides
an independent measurement of the graphene thickness distribution map. The work
function, measured by photoelectron emission microscopy (PEEM), varies across
the surface from 4.34 to 4.50eV according to both the graphene thickness and
the graphene-SiC interface chemical state. At least two SiC surface chemical
states (i.e., two different SiC surface structures) are present at the
graphene/SiC interface. Charge transfer occurs at each graphene/SiC interface.
K-space PEEM gives 3D maps of the k_|| pi - pi* band dispersion in micron scale
regions show that the Dirac point shifts as a function of graphene thickness.
Novel Bragg diffraction of the Dirac cones via the superlattice formed by the
commensurately rotated graphene sheets is observed. The experiments underline
the importance of lateral and spectroscopic resolution on the scale of future
electronic devices in order to precisely characterize the transport properties
and band alignments
Highly-ordered graphene for two dimensional electronics
With expanding interest in graphene-based electronics, it is crucial that
high quality graphene films be grown. Sublimation of Si from the 4H-SiC(0001)
Si-terminated) surface in ultrahigh vacuum is a demonstrated method to produce
epitaxial graphene sheets on a semiconductor. In this paper we show that
graphene grown from the SiC (C-terminated) surface are of higher
quality than those previously grown on SiC(0001). Graphene grown on the C-face
can have structural domain sizes more than three times larger than those grown
on the Si-face while at the same time reducing SiC substrate disorder from
sublimation by an order of magnitude.Comment: Submitted to Appl. Phys. Let
Electronic Cooling via Interlayer Coulomb Coupling in Multilayer Epitaxial Graphene
In van der Waals bonded or rotationally disordered multilayer stacks of
two-dimensional (2D) materials, the electronic states remain tightly confined
within individual 2D layers. As a result, electron-phonon interactions occur
primarily within layers and interlayer electrical conductivities are low. In
addition, strong covalent in-plane intralayer bonding combined with weak van
der Waals interlayer bonding results in weak phonon-mediated thermal coupling
between the layers. We demonstrate here, however, that Coulomb interactions
between electrons in different layers of multilayer epitaxial graphene provide
an important mechanism for interlayer thermal transport even though all
electronic states are strongly confined within individual 2D layers. This
effect is manifested in the relaxation dynamics of hot carriers in ultrafast
time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb
coupling containing no free parameters that accounts for the experimentally
observed trends in hot-carrier dynamics as temperature and the number of layers
is varied.Comment: 54 pages, 15 figures, uses documentclass{achemso}, M.T.M. and J.R.T.
contributed equally to this wor
Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level
The electronic shell structure of triangular, hexagonal and round graphene
quantum dots (flakes) near the Fermi level has been studied using a
tight-binding method. The results show that close to the Fermi level the shell
structure of a triangular flake is that of free massless particles, and that
triangles with an armchair edge show an additional sequence of levels ("ghost
states"). These levels result from the graphene band structure and the plane
wave solution of the wave equation, and they are absent for triangles with an
zigzag edge. All zigzag triangles exhibit a prominent edge state at the Fermi
level, and few low-energy conduction electron states occur both in triangular
and hexagonal flakes due to symmetry reasons. Armchair triangles can be used as
building blocks for other types of flakes that support the ghost states. Edge
roughness has only a small effect on the level structure of the triangular
flakes, but the effect is considerably enhanced in the other types of flakes.
In round flakes, the states near the Fermi level depend strongly on the flake
radius, and they are always localized on the zigzag parts of the edge
How harmonic is dipole resonance of metal clusters?
We discuss the degree of anharmonicity of dipole plasmon resonances in metal
clusters. We employ the time-dependent variational principle and show that the
relative shift of the second phonon scales as in energy, being
the number of particles. This scaling property coincides with that for nuclear
giant resonances. Contrary to the previous study based on the boson-expansion
method, the deviation from the harmonic limit is found to be almost negligible
for Na clusters, the result being consistent with the recent experimental
observation.Comment: RevTex, 8 page
First direct observation of a nearly ideal graphene band structure
Angle-resolved photoemission and X-ray diffraction experiments show that
multilayer epitaxial graphene grown on the SiC(000-1) surface is a new form of
carbon that is composed of effectively isolated graphene sheets. The unique
rotational stacking of these films cause adjacent graphene layers to
electronically decouple leading to a set of nearly independent linearly
dispersing bands (Dirac cones) at the graphene K-point. Each cone corresponds
to an individual macro-scale graphene sheet in a multilayer stack where
AB-stacked sheets can be considered as low density faults.Comment: 5 pages, 4 figure
Theoretical Aspects of the Fractional Quantum Hall Effect in Graphene
We review the theoretical basis and understanding of electronic interactions
in graphene Landau levels, in the limit of strong correlations. This limit
occurs when inter-Landau-level excitations may be omitted because they belong
to a high-energy sector, whereas the low-energy excitations only involve the
same level, such that the kinetic energy (of the Landau level) is an
unimportant constant. Two prominent effects emerge in this limit of strong
electronic correlations: generalised quantum Hall ferromagnetic states that
profit from the approximate four-fold spin-valley degeneracy of graphene's
Landau levels and the fractional quantum Hall effect. Here, we discuss these
effects in the framework of an SU(4)-symmetric theory, in comparison with
available experimental observations.Comment: 12 pages, 3 figures; review for the proceedings of the Nobel
Symposium on Graphene and Quantum Matte
The structural properties of the multi-layer graphene/4H-SiC(000-1) system as determined by Surface X-ray Diffraction
We present a structural analysis of the multi-layer graphene-4HSiC(000-1})
system using Surface X-Ray Reflectivity. We show for the first time that
graphene films grown on the C-terminated (000-1}) surface have a
graphene-substrate bond length that is very short (0.162nm). The measured
distance rules out a weak Van der Waals interaction to the substrate and
instead indicates a strong bond between the first graphene layer and the bulk
as predicted by ab-initio calculations. The measurements also indicate that
multi-layer graphene grows in a near turbostratic mode on this surface. This
result may explain the lack of a broken graphene symmetry inferred from
conduction measurements on this system [C. Berger et al., Science 312, 1191
(2006)].Comment: 9 pages with 6 figure
- …
