12 research outputs found

    Clinical Outcomes of Patients With Drug-Resistant Tuberculous Meningitis Treated With an Intensified Antituberculosis Regimen.

    Get PDF
    Drug-resistant tuberculous meningitis (TBM) is difficult to diagnose and treat. Mortality is high and optimal treatment is unknown. We compared clinical outcomes of drug-resistant and -susceptible TBM treated with either standard or intensified antituberculosis treatment. We analyzed the influence of Mycobacterium tuberculosis drug resistance on the outcomes of patients with TBM enrolled into a randomized controlled trial comparing a standard, 9-month antituberculosis regimen (containing rifampicin 10 mg/kg/day) with an intensified regimen with higher-dose rifampicin (15 mg/kg/day) and levofloxacin (20 mg/kg/day) for the first 8 weeks. The primary endpoint of the trial was 9-month survival. In this subgroup analysis, resistance categories were predefined as multidrug resistant (MDR), isoniazid resistant, rifampicin susceptible (INH-R), and susceptible to rifampicin and isoniazid (INH-S + RIF-S). Outcome by resistance categories and response to intensified treatment were compared and estimated by Cox regression. Of 817 randomized patients, 322 had a known drug resistance profile. INH-R was found in 86 (26.7%) patients, MDR in 15 (4.7%) patients, rifampicin monoresistance in 1 patient (0.3%), and INH-S + RIF-S in 220 (68.3%) patients. Multivariable regression showed that MDR (hazard ratio [HR], 5.91 [95% confidence interval {CI}, 3.00-11.6]), P < .001), was an independent predictor of death. INH-R had a significant association with the combined outcome of new neurological events or death (HR, 1.58 [95% CI, 1.11-2.23]). Adjusted Cox regression, corrected for treatment adjustments, showed that intensified treatment was significantly associated with improved survival (HR, 0.34 [95% CI, .15-.76], P = .01) in INH-R TBM. Early intensified treatment improved survival in patients with INH-R TBM. Targeted regimens for drug-resistant TBM should be further explored

    Intensified Antituberculosis Therapy in Adults with Tuberculous Meningitis

    Get PDF
    BACKGROUND Tuberculous meningitis is often lethal. Early antituberculosis treatment and adjunctive treatment with glucocorticoids improve survival, but nearly one third of patients with the condition still die. We hypothesized that intensified antituberculosis treatment would enhance the killing of intracerebral Mycobacterium tuberculosis organisms and decrease the rate of death among patients. METHODS We performed a randomized, double-blind, placebo-controlled trial involving human immunodeficiency virus (HIV)-infected adults and HIV-uninfected adults with a clinical diagnosis of tuberculous meningitis who were admitted to one of two Vietnamese hospitals. We compared a standard, 9-month antituberculosis regimen (which included 10 mg of rifampin per kilogram of body weight per day) with an intensified regimen that included higher-dose rifampin (15 mg per kilogram per day) and levofloxacin (20 mg per kilogram per day) for the first 8 weeks of treatment. The primary outcome was death by 9 months after randomization. RESULTS A total of 817 patients (349 of whom were HIV-infected) were enrolled; 409 were randomly assigned to receive the standard regimen, and 408 were assigned to receive intensified treatment. During the 9 months of follow-up, 113 patients in the intensified-treatment group and 114 patients in the standard-treatment group died (hazard ratio, 0.94; 95% confidence interval, 0.73 to 1.22; P=0.66). There was no evidence of a significant differential effect of intensified treatment in the overall population or in any of the subgroups, with the possible exception of patients infected with isoniazid-resistant M. tuberculosis. There were also no significant differences in secondary outcomes between the treatment groups. The overall number of adverse events leading to treatment interruption did not differ significantly between the treatment groups (64 events in the standard-treatment group and 95 events in the intensified-treatment group, P=0.08). CONCLUSIONS Intensified antituberculosis treatment was not associated with a higher rate of survival among patients with tuberculous meningitis than standard treatment. (Funded by the Wellcome Trust and the Li Ka Shing Foundation; Current Controlled Trials number, ISRCTN61649292.)

    Intensified treatment with high dose Rifampicin and Levofloxacin compared to standard treatment for adult patients with Tuberculous Meningitis (TBM-IT): protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculous meningitis is the most severe form of tuberculosis. Mortality for untreated tuberculous meningitis is 100%. Despite the introduction of antibiotic treatment for tuberculosis the mortality rate for tuberculous meningitis remains high; approximately 25% for HIV-negative and 67% for HIV positive patients with most deaths occurring within one month of starting therapy. The high mortality rate in tuberculous meningitis reflects the severity of the condition but also the poor antibacterial activity of current treatment regimes and relatively poor penetration of these drugs into the central nervous system. Improving the antitubercular activity in the central nervous system of current therapy may help improve outcomes. Increasing the dose of rifampicin, a key drug with known poor cerebrospinal fluid penetration may lead to higher drug levels at the site of infection and may improve survival. Of the second generation fluoroquinolones, levofloxacin may have the optimal pharmacological features including cerebrospinal fluid penetration, with a ratio of Area Under the Curve (AUC) in cerebrospinal fluid to AUC in plasma of >75% and strong bactericidal activity against <it>Mycobacterium tuberculosis</it>. We propose a randomized controlled trial to assess the efficacy of an intensified anti-tubercular treatment regimen in tuberculous meningitis patients, comparing current standard tuberculous meningitis treatment regimens with standard treatment intensified with high-dose rifampicin and additional levofloxacin.</p> <p>Methods/Design</p> <p>A randomized, double blind, placebo-controlled trial with two parallel arms, comparing standard Vietnamese national guideline treatment for tuberculous meningitis with standard treatment <it>plus </it>an increased dose of rifampicin (to 15 mg/kg/day total) and additional levofloxacin. The study will include 750 patients (375 per treatment group) including a minimum of 350 HIV-positive patients. The calculation assumes an overall mortality of 40% vs. 30% in the two arms, respectively (corresponding to a target hazard ratio of 0.7), a power of 80% and a two-sided significance level of 5%. Randomization ratio is 1:1. The primary endpoint is overall survival, i.e. time from randomization to death during a follow-up period of 9 months. Secondary endpoints are: neurological disability at 9 months, time to new neurological event or death, time to new or recurrent AIDS-defining illness or death (in HIV-positive patients only), severe adverse events, and rate of treatment interruption for adverse events.</p> <p>Discussion</p> <p>Currently very few options are available for the treatment of TBM and the mortality rate remains unacceptably high with severe disabilities seen in many of the survivors. This trial is based on the hypothesis that current anti-mycobacterial treatment schedules for TBM are not potent enough and that outcomes will be improved by increasing the CSF penetrating power of this regimen by optimising dosage and using additional drugs with better CSF penetration.</p> <p>Trial registration</p> <p>International Standard Randomised Controlled Trial Number <a href="http://www.controlled-trials.com/ISRCTN61649292">ISRCTN61649292</a></p

    Prognostic models for 9 month mortality in tuberculous meningitis

    Get PDF
    Background: Tuberculous meningitis (TBM) is the most severe form of extra-pulmonary tuberculosis. We developed and validated prognostic models for 9-month mortality in HIV-uninfected and HIV-infected adults with TBM. Methods: We included 1699 subjects from four randomized clinical trials and one prospective observational study conducted at two major referral hospitals in Southern Vietnam from 2001-2015. Modelling was based on multivariable Cox proportional hazards regression. The final prognostic models were validated internally and temporally, and displayed using nomograms and a web-based app (https://thaole.shinyapps.io/tbmapp/). Results: A total of 951 HIV-uninfected and 748 HIV-infected subjects with TBM were included, of whom 219/951 (23.0%) and 384/748 (51.3%) died during 9-month follow-up. Common predictors for increased mortality in both populations were higher Medical Research Council (MRC) disease severity grade and lower cerebrospinal fluid lymphocyte cells count. In HIV-uninfected subjects, older age, previous tuberculosis, not receiving adjunctive dexamethasone, and focal neurological signs were additional risk factors; in HIV-infected subjects, lower weight, lower peripheral blood CD4 cell count, and abnormal plasma sodium were additional risk factors. The areas under the receiver operating characteristic curves (AUCs) for the final prognostic models were 0.77 (HIV-uninfected population) and 0.78 (HIV-infected population), demonstrating markedly better discrimination than the MRC grade (AUC 0.66 and 0.70) or the Glasgow Coma Score (AUC 0.68 and 0.71) alone. Conclusions: The developed models showed good performance and could be used in clinical practice to assist doctors in identifying TBM patients at high risk of death and at increased need of supportive care.This work was supported by the Academy of Medical Sciences and the Health Foundation (Clinician Scientist Fellowship to M. E. T.), the National Institute of Health Research Cambridge Biomedical Research Centre (M. E. T), and a Wellcome Trust Intermediate Fellowship (grant number WT097147MA) to J.D

    Evolution and transmission of antibiotic resistance is driven by Beijing lineage Mycobacterium tuberculosis in Vietnam

    Get PDF
    A previous investigation has elucidated the landscape of Mtb genomic diversity and transmission dynamics in Ho Chi Minh City, Vietnam. Here, we expand the scope of this survey by adding a substantial number of additional genomes (total sample size: 2,542) and phenotypic drug susceptibility data for the majority of isolates. We aim to explore the prevalence and evolutionary dynamics of drug resistance and our ability to predict drug resistance from sequencing data. Among isolates tested phenotypically against first-line drugs, we observed high rates of streptomycin [STR, 37.7% ( N = 573/1,520)] and isoniazid resistance [INH, 25.7% ( N = 459/1,786)] and lower rates of resistance to rifampicin [RIF, 4.9% ( N = 87/1,786)] and ethambutol [EMB, 4.2% ( N = 75/1,785)]. Relative to global benchmarks, resistance to STR and INH was predicted accurately when applying the TB-Profiler algorithm to whole genome sequencing data (sensitivities of 0.81 and 0.87, respectively), while resistance to RIF and EMB was predicted relatively poorly (sensitivities of 0.70 and 0.44, respectively). Exploring the evolution of drug resistance revealed the main phylogenetic lineages to display differing dynamics and tendencies to evolve resistance via mutations in certain genes. The Beijing sublineage L2.2.1 was found to acquire de novo resistance mutations more frequently than isolates from other lineages and to suffer no apparent fitness cost acting to impede the transmission of resistance. Mutations conferring resistance to INH and STR arose earlier, on average, than those conferring resistance to RIF and are now more widespread across the phylogeny. The high prevalence of “background” INH resistance, combined with high rates of RIF mono-resistance (20.7%, N = 18/87), suggests that rapid assays for INH resistance will be valuable in this setting. These tests will allow the detection of INH mono-resistance and will allow multi-drug-resistant isolates to be distinguished from isolates with RIF mono-resistance. IMPORTANCE Drug-resistant tuberculosis (TB) infection is a growing and potent concern, and combating it will be necessary to achieve the WHO’s goal of a 95% reduction in TB deaths by 2035. While prior studies have explored the evolution and spread of drug resistance, we still lack a clear understanding of the fitness costs (if any) imposed by resistance-conferring mutations and the role that Mtb genetic lineage plays in determining the likelihood of resistance evolution. This study offers insight into these questions by assessing the dynamics of resistance evolution in a high-burden Southeast Asian setting with a diverse lineage composition. It demonstrates that there are clear lineage-specific differences in the dynamics of resistance acquisition and transmission and shows that different lineages evolve resistance via characteristic mutational pathways

    The Amino Acid Homoarginine Inhibits Atherogenesis by Modulating T-Cell Function

    No full text
    Background: Amino acid metabolism is crucial for inflammatory processes during atherogenesis. The endogenous amino acid homoarginine is a robust biomarker for cardiovascular outcome and mortality with high levels being protective. However, the underlying mechanisms remain elusive. We investigated the effect of homoarginine supplementation on atherosclerotic plaque development with a particular focus on inflammation. Methods: Female ApoE-deficient mice were supplemented with homoarginine (14 mg/L) in drinking water starting 2 weeks before and continuing throughout a 6-week period of Western-type diet feeding. Control mice received normal drinking water. Immunohistochemistry and flow cytometry were used for plaque- and immunological phenotyping. T cells were characterized using mass spectrometry-based proteomics, by functional in vitro approaches, for example, proliferation and migration/chemotaxis assays as well as by super-resolution microscopy. Results: Homoarginine supplementation led to a 2-fold increase in circulating homoarginine concentrations. Homoarginine-treated mice exhibited reduced atherosclerosis in the aortic root and brachiocephalic trunk. A substantial decrease in CD3+T cells in the atherosclerotic lesions suggested a T-cell-related effect of homoarginine supplementation, which was mainly attributed to CD4+T cells. Macrophages, dendritic cells, and B cells were not affected. CD4+T-cell proteomics and subsequent pathway analysis together with in vitro studies demonstrated that homoarginine profoundly modulated the spatial organization of the T-cell actin cytoskeleton and increased filopodia formation via inhibition of Myh9 (myosin heavy chain 9). Further mechanistic studies revealed an inhibition of T-cell proliferation as well as a striking impairment of the migratory capacities of T cells in response to relevant chemokines by homoarginine, all of which likely contribute to its atheroprotective effects. Conclusions: Our study unravels a novel mechanism by which the amino acid homoarginine reduces atherosclerosis, establishing that homoarginine modulates the T-cell cytoskeleton and thereby mitigates T-cell functions important during atherogenesis. These findings provide a molecular explanation for the beneficial effects of homoarginine in atherosclerotic cardiovascular disease

    MUC5AC genetic variation is associated with tuberculous meningitis CSF cytokine responses and mortality

    No full text
    BACKGROUND: The purpose of this study was to assess if single nucleotide polymorphisms (SNPs) in lung mucins MUC5B and MUC5AC are associated with Mycobacterium tuberculosis outcomes. METHODS: Independent SNPs in MUC5B and MUC5AC (genotyped by Illumina HumanOmniExpress array) were assessed for associations with TNF concentrations (measured by immunoassay) in cerebral spinal fluid (CSF) from tuberculous meningitis (TBM) patients. SNPs associated with CSF TNF concentrations were carried forward for analyses of pulmonary and meningeal tuberculosis susceptibility and TBM mortality. RESULTS: MUC5AC SNP rs28737416 T allele was associated with lower CSF concentrations of TNF(p = 1.8*10-8) and IFNγ(p = 2.3*10-6). In an additive genetic model, rs28737416 T/T genotype was associated with higher susceptibility to TBM (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.03, 1.49; p = 0.02), but not pulmonary tuberculosis (OR 1.11, 95% CI 0.98, 1.25; p = 0.10). TBM mortality was higher among participants with the rs28737416 T/T and T/C genotypes (35/119, 30.4%) versus the C/C genotype (11/89, 12.4%; log-rank p = 0.005) in a Vietnam discovery cohort (N = 210), an independent Vietnam validation cohort (N = 87; 9/87, 19.1% vs 1/20, 2.5%; log-rank p = 0.02), and an Indonesia validation cohort (N = 468, 127/287, 44.3% vs 65/181, 35.9%, log-rank p = 0.06). CONCLUSIONS: MUC5AC variants may contribute to immune changes that influence TBM outcomes

    Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease

    Get PDF
    Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4(+) T cells display impaired Th1 polarization, as reflected by reduced interferon-gamma production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c(+) dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-gamma concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway. Previous studies have shown that the CD40L-CD40 signaling axis plays a role in atherosclerosis. Here the authors investigate the cell-specific functions of the most relevant CD40L-expressing cell types in atherosclerosis. Deficiency of T cell-derived CD40L reduces and stabilizes plaques through impaired Th1 polarization while platelet-derived CD40L ameliorates atherothrombosis
    corecore