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Summary:  We used time-updated Glasgow coma score and plasma sodium measurements, together 

with baseline patient characteristics, in a model to dynamically predict death in adults with tuberculous 

meningitis. Predictions can be made from any time point until day 30 of follow-up. 
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 Abstract  

Background: Pre-treatment predictors of death from tuberculous meningitis (TBM) are well-established, 

but whether outcome can be predicted more accurately after the start of treatment by updated clinical 

variables is unknown. Hence, we developed and validated models that dynamically predict mortality 

using time-updated Glasgow coma score (GCS) and plasma sodium measurements, together with 

patient baseline characteristics.  

Methods: We included 1048 adults from four TBM studies conducted in southern Vietnam from 2004-

2016. We used a landmarking approach to predict death within 120 days after treatment initiation using 

time-updated data during the first 30 days of treatment. Separate models were built for patients with 

and without human immunodeficiency virus (HIV) infection. We used the area under the receiver 

operating characteristic curve (AUC) to evaluate performance of the models at day 10, 20 and 30 of 

treatment to predict mortality by 60, 90 and 120 days. Our internal validation was corrected for over-

optimism using bootstrap. We provide a web-based application that computes mortality risk within 120 

days.  

Results: Higher GCS indicated better prognosis in all patients. In HIV-infected patients, higher plasma 

sodium was uniformly associated with good prognosis, whereas in HIV-uninfected patients the 

association was heterogeneous over time. The bias-corrected AUC of the models ranged from 0.82-0.92 

in HIV-uninfected, and 0.81-0.85 in HIV-infected individuals. The models outperformed the previously 

published baseline models.  

Conclusions: Time-updated GCS and plasma sodium measurements improved predictions based solely 

on information obtained at diagnosis. Our models may be used in practice to define those with poor 

prognosis during treatment.  
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Introduction  
Tuberculous meningitis (TBM) is now one of the commonest causes of life-threatening meningitis 

worldwide, a distinction driven by the continued ability of Mycobacterium tuberculosis to evade global 

control efforts, the strong link between human immunodeficiency virus (HIV) infection and TBM, and the 

success of vaccination programmes against other bacterial causes of meningitis [1]. Despite the best 

available anti-tuberculosis drug treatment, death occurs in around 20% of HIV-uninfected and 40% of 

HIV-infected patients [2,3]. Survivors are often left with irreversible neurological sequelae, which 

severely affects their quality of life [4].  

The pre-treatment predictors of poor outcome from TBM are well-studied. The British Medical Research 

Council (MRC) score to grade TBM severity has been used since 1948. Although it was defined 

empirically, rather than by statistical derivation, it has repeatedly been shown to be a good pre-

treatment predictor of death from TBM [5–8]. It combines information on the patient’s conscious state, 

assessed since 1974 by the Glasgow Coma Score (GCS) [5], and focal neurological deficits. More recently, 

statistical modelling of data from large cohorts of patients with TBM have revealed other strong 

predictors of death, including HIV infection, older age, multi-drug resistance, and low numbers of 

cerebrospinal fluid (CSF) white cells [6,8–10]. Indeed, we recently built and validated models for 9 

month-mortality using a pooled database from five randomized controlled trials (RCT) and one 

observational study on TBM [8]. The models were based on several pre-treatment clinical variables and 

better predicted subsequent death than the MRC grade alone.  

TBM requires 9-12 months of anti-tuberculosis drug treatment, during which complications from both 

the disease and the drugs can occur [2]. These complications change the likelihood of a poor outcome 

from TBM, but are not captured by current prognostic models based on pre-treatment variables alone. 

Currently, there are no published models that take into account changing clinical variables after the start 
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of TBM treatment. Therefore, our aim was to develop and validate dynamic prediction models that 

incorporate baseline patient characteristics, as well as follow-up measurements (time-updated values) 

of GCS and plasma sodium. Our models were constructed using a large sample of 1048 Vietnamese 

adults with TBM. During the first 30 days of anti-tuberculosis treatment, we used updated information 

to predict mortality within the first 120 days. This time range of 30 days was selected based on our 

clinical experience that the first 30 days are critical to outcome. Most patients are hospitalised during 

this period and repeated measures of GCS and plasma sodium are usually available. We compared the 

predictive performance of these dynamic models to the previously published baseline models [8]. 

Methods 

Study population  

We used data from three RCTs [3,11,12] and one observational study [13] on TBM which provided 

longitudinal information of GCS and plasma sodium during follow-up. The studies were conducted 

between 2004 and 2016 at Pham Ngoc Thach Hospital and the Hospital for Tropical Diseases, which are 

two tertiary referral hospitals in southern Vietnam. Patients were included in the studies if they were 

clinically diagnosed with TBM, defined as having more than 5 days of meningitis symptoms and CSF 

abnormalities.  TBM diagnosis was categorised in all study participants as definite, probable, and 

possible. These diagnostic categories  were defined by study-specific criteria  in all patients enrolled 

before 2010 and by published consensus criteria from 2010 onwards [14]. A summary of the studies and 

their inclusion criteria is provided in supplementary Table S1. The laboratory investigations and anti-

tuberculosis and adjunctive treatment are described in detail elsewhere [8]. The management of low or 

high plasma sodium was not standardised in any of the studies, but left to the individual practice of the 

attending physician. Study participants were excluded if no information on GCS or plasma sodium was 

available, if any of the baseline risk factors were missing, if an alternative diagnosis to TBM was 
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confirmed, or if standard first-line anti-tuberculosis drug treatment was not given. All studies were 

approved by the Oxford Tropical Research Ethics Committee and the Hospital for Tropical Diseases and 

Pham Ngoc Thach Hospital Ethics Committees. 

Primary outcome  

The primary outcome for this study was defined as overall mortality during 120 days from the start of 

anti-tuberculosis treatment. Follow-up was restricted to 120 days because deaths occurring within this 

period are much more likely to be attributable to TBM rather than an alternative cause. Since anti-

tuberculosis treatment usually started immediately following TBM diagnosis, time since TBM diagnosis 

and time since the initiation of anti-tuberculosis treatment can be seen to refer to the same time point 

in our analysis.   

Predictors 

As in our previous prognostic modelling study [8], we constructed separate prediction models for HIV-

uninfected  and HIV-infected patients. Our new models included both baseline patient characteristics 

and the longitudinal measurements of GCS and plasma sodium. We chose GCS and plasma sodium 

because both have been shown to be good pre-treatment predictors of death from TBM and both are 

monitored regularly in almost all settings. In the first 30 days of follow-up, most patients had daily GCS 

measurements in one trial [3] and weekly in the other studies. Plasma sodium was mostly measured 

daily for patients in one trial [12] and weekly in the other studies. We did not include other biomarkers 

such as CSF protein or ratio of CSF to blood glucose because on average we only had two measurements 

per patient in the first 30 days, precluding the development of a robust model.  

We included the baseline characteristics that were identified as predictors of death within 9 months in 

our previous publication [8]. Specifically, in the HIV-uninfected population, these were age, history of 

previous TB treatment, MRC grade, focal neurological signs, and CSF lymphocyte count. In the HIV-
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infected population, these were weight, MRC grade, CSF lymphocyte count, study cohort, and peripheral 

blood CD4 cell count. Baseline laboratory values were defined as values recorded closest to enrolment 

(up to ±7 days from enrolment) [8]. Compared to the previous analysis, we excluded patients enrolled in 

two studies [15,16] because their GCS and plasma sodium after the start of anti-tuberculosis treatment 

were not available. However, we retained the study cohort variable in the model for HIV-infected 

patients to account for improvements in treatment and patient supportive care over the last 15 years in 

Vietnam. The most significant of these was the nation-wide scale-up of free HIV antiretroviral therapy 

since 2005 [17]. We included sodium in the model for both populations, and used it as a time-updated 

instead of as a baseline variable.  

Statistical analysis  

The details of the statistical analysis are given in the Supplementary appendix S1. In brief, we used a 

mixed model landmark approach [18,19]. We constructed a prediction model at a range of landmark 

time points: from day 0 to day 30 after diagnosis. For each landmark time, we created a data set 

including all patients who were still alive up to that landmark time point. For GCS, we used the last 

available measured value up till 10 days prior to the landmark time. With plasma sodium, we used the 

fitted value at the landmark time obtained from a linear mixed-effects model as explained in the 

appendix.   To obtain predictions over a range of different time points using a single model, we 

implemented the “landmarking super model” approach [20]. Specifically, we combined the 31 landmark 

data sets, one for each day since initiation of anti-tuberculosis treatment until day 30. The stacked data 

was analysed using a Cox proportional hazards model with landmark time included as a stratification 

factor. We allowed for a non-linear relation between sodium and mortality that can vary over time. 

Other predictors were included linearly.  We also explored a number of extra analyses and an alternative 

modelling approach, which are described in the Supplementary appendix S1.  
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We assessed the discrimination and calibration ability of the models based on the area under the 

receiver operating characteristic curve (AUC), the Brier score (i.e. the prediction error with a square loss 

function) [18], and the calibration plot [21] . A higher AUC value and a lower Brier score indicate better 

performance. The evaluation was carried out at day 10, 20 and 30 for mortality until day 60, 90 and 120 

after diagnosis.  We also calculated the AUC and Brier score of the published baseline model [8] at the 

same prediction times using our landmark data sets. We used bootstrap internal validation to correct for 

the over-optimism in the predictive performance [22]. The final models have been implemented in a 

web-based calculator to facilitate their application in clinical practice.  All analyses were conducted using 

R software, version 3.5.0 [23].  

Results 

Baseline characteristics of study participants  

In total, there were 1248 patients in the four studies, of which 1068 were included in the analysis. The 

reasons for excluding the other 180 patients were: confirmed other diagnosis (n = 16), first-line anti-

tuberculosis drugs not received (n = 3), missing information on either of the two markers (n = 7), missing 

values for at least one of the baseline patient characteristics (n = 154). Baseline characteristics of the 

included patients are given in Table 1. 550 (51%) were HIV-uninfected, and 518 (49%) were HIV-infected. 

The median age was 34 years (interquartile range (IQR):  27-44). Out of 1068 patients, 395 (37%) were 

MRC grade I, 459 (43%) were MRC grade II, and 214 (20%) were MRC grade III. The number of definite 

TBM (microbiologically confirmed TBM) cases was 636/1068 (60%). In HIV-infected subjects, the median 

peripheral blood CD4 count was 40 cells/μL (IQR:  15 - 101). Compared to the HIV-uninfected, HIV-

infected patients were younger (median age 31 years vs. 41 years), were admitted to the hospital in 

more severe condition (MRC Grade III 24.9% vs. 15.5%), and more likely to be classified as having 

definite TBM (70% vs. 50%).  
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Figure S1 displays the Kaplan-Meier estimate of the overall survival by HIV status. During the 120 days of 

follow-up, the number of deaths was 76/550 (14%) in the HIV-uninfected group, and 202/518 (39%) in 

the HIV-infected group.  

Longitudinal profile of GCS and plasma sodium 

During the first 30 days of treatment, HIV-uninfected patients had a mean of 21 (median (IQR): 27 (7-

31)) GCS assessments and HIV-uninfected patients had a mean of 14 (median (IQR):  5 ( 5-29)) 

assessments. The mean numbers of plasma sodium measurements was 6 (median (IQR): 5 (4-7)) and 4 

(median (IQR): 5(3-5)) in HIV-uninfected and HIV-infected patients, respectively. Figure 1 depicts the 

individual trajectories of the two markers as well as their median value and quartiles during the first 30 

days.   All survivors, independent of HIV status, tended to have higher GCS than those who died.  Plasma 

sodium values were also higher in HIV-infected survivors, with a less clear relationship between sodium 

and survival in HIV-uninfected patients.  

Parameter estimates  

Table 2 gives parameter estimates of the dynamic landmark supermodels. Regarding GCS, a higher value 

indicated lower mortality with a hazard ratio of 0.76 (95% confidence interval (CI): 0.71-0.81) and 0.85 

(95% CI: 0.81- 0.91) in HIV-uninfected and HIV-infected patients respectively. Figure 2 displays the 

hazard ratio for sodium at day 0, 10 and 30. Sodium concentrations of 135 mmol/L were taken as the 

reference. As can be seen, the association between plasma sodium and mortality differed by HIV status. 

In HIV-uninfected patients, it was heterogeneous over time. Higher sodium concentrations were 

associated with worse prognosis from baseline until day 10 of treatment. However, by day 30, higher 

sodium concentrations were associated with increased survival. In HIV-infected patients, higher sodium 

concentrations uniformly associated with better prognosis across all prediction time points. 
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Compared with the published baseline model [8], the strength of the association between  MRC grade 

and mortality was attenuated with the inclusion of time-updated GCS. This is not surprising as GCS is 

strongly correlated with MRC grade. The strength of the association for the other baseline covariates 

was similar between the dynamic models and the baseline models, except for history of previous TB 

treatment in the model for HIV-uninfected patients. The hazard ratio for this predictor was 0.57 

indicating a beneficial effect which contradicted with that in the baseline model (HR = 1.57, CI 1.09 -

2.26). However, it was not statistically significant at 0.05 level (p-value = 0.27, CI 0.21-1.54).   

Predictive performance  

All the considered alternative analyses (Supplementary appendix S1) did not improve the predictive 

performance of the models.  

The dynamic prognostic model showed good discrimination between survivors and deaths, with 

corrected AUC ranging from 0.82-0.92 in HIV-uninfected, and from 0.81-0.85 in HIV-uninfected patients 

across the chosen landmark and prediction times (Table 3). The dynamic models clearly improved over 

the published baseline models [8], which had AUCs from 0.75-0.81 in HIV-uninfected and from 0.71-0.76 

in HIV-infected subjects. In terms of calibration, Figure S2 shows good agreement between the 

predicted risks and the observed risks for all three chosen landmark time points. Overall performance, 

as measured by the Brier score, was also improved in the dynamic models compared to the baseline 

models (Table S2).  

Model display and illustration  

We implemented the models in a user-friendly web-based calculator, which is available at: 

https://thaole.shinyapps.io/DynamicTBMApp/. The web calculator allows the user to make predictions 

of mortality within 120 days after the initiation of TB treatment from any of the first 30 days. As in the 

baseline model’s web calculator for HIV-infected patients (https://thaole.shinyapps.io/TBMApp/), we 

chose the intensified trial [3] as cohort variable because it is the most recent cohort. 
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In Figure 3, we illustrate the use of the model to dynamically predict mortality until day 120 for a 39 

years old HIV-uninfected patient without previous TB, having MRC grade III, no focal neurological signs 

at enrolment and with CSF lymphocyte count at baseline of 73.5 cells/μL (patient A). A similar 

illustration for an HIV-infected patient (patient B) is in Supplementary Figure S3. Baseline characteristics 

of the two patients are documented in Supplementary Table S3. As can be seen, the predicted survival 

probability is updated as new information on GCS and plasma sodium becomes available. Of note, the 

risk predictions can vary substantially over the landmark days, indicating the importance of updating 

prediction using the most recent information. 

Discussion  

Using most recent information on disease state is important for monitoring patients, tailoring treatment 

and improving disease outcomes. We developed and validated a dynamic prediction model for death in 

TBM patients with and without HIV coinfection.  The models used time-updated information on Glasgow 

coma score and plasma sodium as well as baseline patient characteristics. Indeed, our model provided 

better predictive performance than the model that only used baseline characteristics [8].  

Our model confirmed that GCS is a strong predictor of outcome in both populations. Regarding plasma 

sodium, hyponatraemia is a common complication of TBM, usually caused by cerebral salt wasting or 

the syndrome of inappropriate anti-diuretic hormone[7]. Its impact upon survival has not been well-

studied, although low sodium concentrations can cause reduced consciousness and exacerbate raised 

intracranial pressure.  Mostly, higher sodium concentrations during treatment indicated better 

outcome. While this association was uniformly observed over the first 30 days of treatment in HIV-

infected patients, in HIV-uninfected patients higher concentration predicted worse outcomes in the first 

10 days of treatment, and switched to predicting better outcomes thereafter (Figure 2). This is an 

intriguing finding which is not easily explained. Possible explanation may be the contribution of 
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neurogenic diabetes insipidus, which occurs in severe disease affecting the hypothalamic-pituitary 

access [24], and can cause harmful hypernatraemia. It is unclear why HIV-infection may drive these 

differences and the findings increase the importance of better understanding and managing disorders of 

sodium homeostasis associated with TBM.  

In our database, there are seven HIV-uninfected patients and eight HIV-infected patients with at least 

one measurement of plasma sodium higher than 145 mmol/L (hypernatraemia) in the first 30 days. Of 

those, seven patients died (four in HIV-uninfected and three in HIV-infected patients). All of these 

deaths happened very early, within the first 25 days since the start of anti-tuberculosis treatment. Due 

to the low number of hypernatraemia cases and the timing of the events, the impact of high sodium 

values on mortality was not captured thoroughly in our model, especially at later landmark times.  

Our study has several limitations. First, we only considered GCS and plasma sodium as time-updated 

markers. Including other markers could potentially improve the model predictive performance.  In order 

to include them in future studies, they should be collected more frequently over time. Second, the 

models were developed and validated using data solely from two recruiting centres in the South of 

Vietnam. This restriction may affect the generalisability of the models. Thus, the models require 

validation in different patient populations.  

In conclusion, our dynamic prediction models allowed us to predict 120-day mortality from TBM using 

time-updated data from the first 30 days of treatment. The models were carefully constructed and 

validated internally based on a large data set of 1048 patients. To the best of our knowledge, they are 

the first published dynamic prediction models for TBM. We hope that they will be validated in other 

patient populations and prove useful in practice by providing clinicians and patients better information 

and facilitate decision making regarding treatment and patient management.  
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Table 1: Baseline characteristics of patients with tuberculous meningitis included in the pooled 

database, overall and by human immunodeficiency virus status 

  All patients 

(N=1068) 

 HIV-uninfected 

(N=550) 

 HIV-infected 

(N=518) 

Characteristic na Summary 

statistic 

na Summary 

statistic 

na Summary 

statistic 

Cohort* 1068  550  518  

-  Intensified 

treatment trial 

 689 (64.5%)  431 (78.4%)  258 (49.8%) 

-  Aspirin trial  119 (11.1%)  119 (21.6%)  0(0%) 

-  TBM HIV cohort  44 (4.1%)  0 (0%)  44 (8.5%) 

-  ART timing trial  216 (20.2%)  0 (0%)  216 (41.7%) 

Age (yrs), median 

(IQR) 

1067 34(27,44) 550 41(29,53) 517 31(27,36) 

Weight (kg), median 

(IQR) 

1068 48(43,54) 550 50(45,55) 518 46(41,51) 

Previous tuberculosis 

treatment 

1062 162 (15.3%) 550 50 (9.1%) 512 112 (21.9%) 

MRC gradeb 1068  550  518  

-  Grade I  395 (37%)  208 (37.8%)  187 (36.1%) 

-  Grade II  459 (43%)  257 (46.7%)  202 (39%) 

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article-abstract/doi/10.1093/cid/ciz262/5427068 by U

niversity of C
am

bridge user on 11 April 2019



 

19 
 

-  Grade III  214 (20%)  85 (15.5%)  129 (24.9%) 

Focal neurological 

signs present 

1056 528 (50%) 550 321 (58.4%) 506 207 (40.9%) 

CSF lymphocyte count 

(cells/μL), median 

(IQR) 

1068 94.5(35,208.7) 550 104.8(42,213.1) 518 80.7(25.2,204.8) 

Microbiologically 

confirmed/definite 

TBM 

1068 636 (59.6%) 550 274 (49.8%) 518 362 (69.9%) 

Peripheral blood CD4 

count (cells/μL), 

median (IQR)  

- - -  - 518 40(15,101) 

Abbreviations: CSF, cerebrospinal fluid; HIV, human immunodeficiency virus; IQR, interquartile range; 

MRC, Medical Research Council; TBM, tuberculous meningitis.  

aNumber of subjects with non-missing data for the respective characteristic. Note: the number of 

individuals with measured values can be lower than the maximum (550 resp. 518), but these risk factors 

were not part of the model for that HIV subpopulation.  

bGrade I: Glasgow Coma score (GCS) 15 with no focal neurological signs; Grade II: GCS 11–14, or 15 with 

focal neurological signs; Grade III: GCS ≤10.  

* Included studies are described in the supplementary Table S1. 
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Table 2: Parameter estimates (with 95% confidence intervals) from landmark supermodel by HIV status 

 HIV-uninfected TBM population  HIV-Infected TBM population 

Variable HR 95% CI  HR 95% CI 

Age (per +10y) 1.51 (1.34; 1.69)  - - 

Weight (per +10kg) - -  0.59 (0.47; 0.75) 

MRC gradea      

- Grade I 1 -  1 - 

- Grade II 1.02 (0.37; 2.83)  1.48 (0.99; 2.21) 

- Grade III 1.48 (0.43; 5.05)  1.37 (0.77; 2.45) 

Previous tuberculosis treatment 0.57 (0.21; 1.54)  - - 

Focal neurological signs present 1.45 (0.60; 3.54)  - - 

CSF lymphocyte countb, cells/μL 0.78 (0.68; 0.89)  0.99 (0.91; 1.08) 

Cohort - -    

- Intensified trial  - -  1  

- TBM HIV cohort - -  2.55 (1.62; 4.02) 

- ART timing trial - -  1.55 (1.10; 2.18) 

Peripheral blood CD4 countb, 

cells/μL 

- -  0.92 (0.83; 1.01) 

Time-updated Glasgow coma 

score 

0.76 (0.71; 0.81)  0.85 (0.81; 0.91) 

Time-updated plasma sodium, - -  - - 
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mmol/Lc 

- Plasma sodium 125 vs 135 

mmol/L 

- -  - - 

   - Landmark time = day 0 

(baseline) 

0.45 (0.29; 0.71)  1.67 (0.64; 4.36) 

   - Landmark time = day 10  0.98 (0.54; 1.77)  3.21 (2.11; 4.87) 

   - Landmark time = day 30  2.93 (1.63; 5.25)  3.10 (1.98; 4.83) 

- Plasma sodium 140 vs 135 

mmol/L 

- -  - - 

   - Landmark time = day 0 

(baseline) 

2.37 (1.53; 3.67)  0.88 (0.31; 2.52) 

   - Landmark time = day 10  1.09 (0.65; 1.82)  0.50 (0.28; 0.88) 

   - Landmark time = day 30  0.27 (0.09; 0.87)  0.32 (0.16; 0.61) 

Abbreviations: CI, confidence interval; CSF, cerebrospinal fluid; HIV, human immunodeficiency virus; HR, 

hazard ratio; MRC, Medical Research Council; TBM, tuberculous meningitis.  

a grade I: Glasgow Coma score (GCS) 15 with no focal neurological signs; grade II: GCS 11–14, or 15 with 

focal neurological signs; grade III: GCS ≤10  

bHR per 2-fold increase.  

cThe association of sodium levels and mortality was allowed to vary in a flexible manner. The p-value for 

the interaction between sodium and time was <0.001 and 0.18 respectively for the HIV-uninfected and 

HIV-infected subgroups. To simplify interpretation, we give HRs for two derived sodium contrasts at 

three different landmark time points.
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Table 3 Discrimination of the dynamic model by human immunodeficiency virus (HIV) population 

measured by area under the curve (AUC). The prediction was carried out at day 10, 20 and 30 for 

mortality until day 60, 90 and 120 after diagnosis. 

   Bias-corrected AUC 

Landmark 

time 
Prediction timea Model 

HIV-uninfected 

population 
 

HIV-infected 

population 

10 60 Dynamic model 0.819  0.829 

  Baseline model 0.769  0.762 

 90 Dynamic model 0.834  0.825 

  Baseline model 0.787  0.753 

 120 Dynamic model 0.839  0.814 

  Baseline model 0.810  0.745 

20 60 Dynamic model 0.866  0.832 

  Baseline model 0.775  0.737 

 90 Dynamic model 0.869  0.842 

  Baseline model 0.795  0.728 

 120 Dynamic model 0.866  0.825 

  Baseline model 0.818  0.721 

30 60 Dynamic model 0.919  0.843 

  Baseline model 0.748  0.725 

 90 Dynamic model 0.890  0.845 
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  Baseline model 0.780  0.716 

 120 Dynamic model 0.890  0.816 

  Baseline model 0.811  0.709 

aPrediction time refers to days after the initiation of anti-TB treatment.
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 Figure captions: 

Figure 1: Subject specific profiles for Glasgow coma score (GCS) and plasma sodium over the first 30 

days, stratified by observed survival status within 120 days. The dark blue line represents the median 

value per day, the blue area represents the interquartile range. Plasma sodium of HIV-uninfected 

patients is plotted as (log2(plasma sodium - 100) with the original value as label.  

Figure 2: Hazard ratio for plasma sodium at three landmark times: day 0, day 10 and day 30 after the 

start of TB treatment. A sodium value of 135 mmol/L was taken as the reference. The shaded areas 

represent the 95% confidence intervals.  

Figure 3: Dynamic predictions of survival for patient A at four different days after the start of TB 

treatment. For each day, the left panels display the observed values of GCS and plasma sodium over 

time, the blue line represents the fitted value for sodium. The right panels represent the estimated 

survival probability in red with 95% confidence intervals in grey. 
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Figure 1 
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Figure 2 
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Figure 3 
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