30 research outputs found

    Optimal Feature Search for Vigilance Estimation Using Deep Reinforcement Learning

    Get PDF
    A low level of vigilance is one of the main reasons for traffic and industrial accidents. We conducted experiments to evoke the low level of vigilance and record physiological data through single-channel electroencephalogram (EEG) and electrocardiogram (ECG) measurements. In this study, a deep Q-network (DQN) algorithm was designed, using conventional feature engineering and deep convolutional neural network (CNN) methods, to extract the optimal features. The DQN yielded the optimal features: two CNN features from ECG and two conventional features from EEG. The ECG features were more significant for tracking the transitions within the alertness continuum with the DQN. The classification was performed with a small number of features, and the results were similar to those from using all of the features. This suggests that the DQN could be applied to investigating biomarkers for physiological responses and optimizing the classification system to reduce the input resources

    Rhodium(III)-catalyzed C-C bond formation of quinoline N-oxides at the C-8 position under mild conditions

    No full text
    The Rh(III)-catalyzed C-8 selective direct alkylation and alkynylation of quinoline N-oxides has been developed. The reactions proceeded highly efficiently at room temperature over a broad range of substrates with excellent regioselectivity and functional group tolerance. This development demonstrates the synthetic utility of the N-oxide directing group as a stepping stone for remote C H functionalization of quinolines.11311301sciescopu

    Gelatin Coating for the Improvement of Stability and Cell Uptake of Hydrophobic Drug-Containing Liposomes

    No full text
    Purpose: Most therapeutic agents have limitations owing to low selectivity and poor solubility, resulting in post-treatment side effects. Therefore, there is a need to improve solubility and develop new formulations to deliver therapeutic agents specifically to the target site. Gelatin is a natural protein that is composed of several amino acids. Previous studies revealed that gelatin contains arginyl-glycyl-aspartic acid (RGD) sequences that become ligands for the integrin receptors expressed on cancer cells. Thus, in this study, we aimed to increase the efficiency of drug delivery into cancer cells by coating drug-encapsulating liposomes with gelatin (gelatin-coated liposomes, GCLs). Methods: Liposomes were coated with gelatin using electrostatic interaction and covalent bonding. GCLs were compared with PEGylated liposomes in terms of their size, zeta potential, encapsulation efficiency, stability, dissolution profile, and cell uptake. Results: Small-sized and physically stable GCLs were prepared, and they showed high drug-encapsulation efficiency. An in vitro dissolution study showed sustained release depending on the degree of gelatin coating. Cell uptake studies showed that GCLs were superior to PEGylated liposomes in terms of cancer cell-targeting ability. Conclusions: GCLs can be a novel and promising carrier system for targeted anticancer agent delivery. GCLs, which exhibited various characteristics depending on the coating degree, could be utilized in various ways in future studies

    Formulation, Preparation, Characterization, and Evaluation of Dicarboxylic Ionic Liquid Donepezil Transdermal Patches

    No full text
    Donepezil (DPZ) is generally administered orally to treat Alzheimer’s disease (AD). However, oral administration can cause gastrointestinal side effects. Therefore, to enhance compliance, a new way to deliver DPZ from transdermal patch was developed. Ionic bonds were created by dissolving dicarboxylic acid and DPZ in ethanol, resulting in a stable ionic liquid (IL) state. The synthesized ILs were characterized by differential scanning calorimetry, optical microscope, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The DPZ ILs were then transformed to a suitable drug-in-adhesive patch for transdermal delivery of DPZ. The novel DPZ ILs patch inhibits crystallization of the IL, indicating coherent design. Moreover, DPZ ILs and DPZ IL patch formulations performed excellent skin permeability compared to that of the DPZ free-base patch in both in vitro and ex vivo skin permeability studies

    Regioselective Introduction of Heteroatoms at the C‑8 Position of Quinoline <i>N</i>‑Oxides: Remote C–H Activation Using <i>N</i>‑Oxide as a Stepping Stone

    No full text
    Reported herein is the metal-catalyzed regioselective C–H functionalization of quinoline <i>N</i>-oxides at the 8-position: direct iodination and amidation were developed using rhodium and iridium catalytic systems, respectively. Mechanistic study of the amidation revealed that the unique regioselectivity is achieved through the smooth formation of <i>N</i>-oxide-chelated iridacycle and that an acid additive plays a key role in the rate-determining protodemetalation step. While this approach of remote C–H activation using <i>N</i>-oxide as a directing group could readily be applied to a wide range of heterocyclic substrates under mild conditions with high functional group tolerance, an efficient synthesis of zinquin ester (a fluorescent zinc indicator) was demonstrated

    Rhodium(III)-Catalyzed C–C Bond Formation of Quinoline <i>N</i>‑Oxides at the C‑8 Position under Mild Conditions

    No full text
    The Rh­(III)-catalyzed C-8 selective direct alkylation and alkynylation of quinoline <i>N</i>-oxides has been developed. The reactions proceeded highly efficiently at room temperature over a broad range of substrates with excellent regioselectivity and functional group tolerance. This development demonstrates the synthetic utility of the <i>N</i>-oxide directing group as a stepping stone for remote C–H functionalization of quinolines

    Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2

    No full text
    Monoclinic group 6 transition metal dichalcogenides (TMDs) have been extensively studied for their intriguing 2D physics (e.g. spin Hall insulator) as well as for ohmic homojunction contacts in 2D device applications. A critical prerequisite for those applications is thickness control of the monoclinic 2D materials, which allows subtle engineering of the topological states or electronic bandgaps. Local thickness control enables the realization of clean homojunctions between different electronic states, and novel device operation in a single material. However, conventional fabrication processes, including chemical methods, typically produce non-homogeneous and relatively thick monoclinic TMDs, due to their distorted octahedral structures. Here, we report on a post-patterning technique using laser-irradiation to fabricate homojunctions between two different thickness areas in monoclinic MoTe2. A thickness-dependent electronic change from a metallic to semiconducting state, resulting in an electronic homojunction, was realized by the optical patterning of pristine MoTe2 flakes, and a pre-patterned device channel of monoclinic MoTe2 with a thickness-resolution of 5 nm. Our work provides insight on an optical post-process method for controlling thickness, as a promising approach for fabricating impurity-free 2D TMDs homojunction devices. © 2017 IOP Publishing Ltd3

    Effect of Stabilizers on Encapsulation Efficiency and Release Behavior of Exenatide-Loaded PLGA Microsphere Prepared by the W/O/W Solvent Evaporation Method

    No full text
    The aim of this study was to investigate the effects of various stabilizers on the encapsulation efficiency and release of exenatide-loaded PLGA (poly(lactic-co-glycolic acid)) microspheres prepared by the water-in-oil-in-water (W/O/W) solvent evaporation (SE) method. It was shown that the stabilizers affected exenatide stability in aqueous solutions, at water/dichloromethane interfaces, on PLGA surfaces, or during freeze-thawing and freeze-drying procedures. Sucrose predominantly reduces instability generated during freeze-thawing and freeze-drying. Phenylalanine prevents the destabilization at the water&ndash;dichloromethane (DCM) interface through decreased adsorption. Poloxamer 188 enhances stability in aqueous solutions and prevents adsorption to PLGA. Proline and lysine decrease adsorption on PLGA surfaces. Fourier transform infra-red spectroscopy (FT-IR) was used to find the molecular interaction of additives with exenatide or PLGA. Additives used in stability assessments were then added stepwise into the inner or outer water phase of the W/O/W double emulsion, and exenatide-loaded microspheres were prepared using the solvent evaporation method. The effect of each stabilizer on the encapsulation efficiency and release behavior of microspheres correlated well with the stability assessment results, except for the negative effect of poloxamer 188. Particle size analysis using laser diffractometry, scanning electron microscopy (SEM), water vapor sorption analysis, differential scanning calorimetry (DSC), and circular dichroism (CD) spectroscopy were also employed to characterize the prepared exenatide-loaded PLGA microsphere. This study demonstrated that an adequate formulation can be obtained by the study about the effect of stabilizers on peptide stability at the preformulation step. In addition, it can help to overcome various problems that can cause the destabilization of a peptide during the microsphere-manufacturing process and sustained drug release
    corecore