3,862 research outputs found

    SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC

    Get PDF
    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC.11137Ysciescopu

    Physiological and Molecular Processes Associated with Long Duration of ABA Treatment

    Get PDF
    Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT), and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.11Ysciescopu

    D-π-D chromophores based on dithieno[3,2-b:2′,3'-d]thiophene (DTT) : potential application in the fabrication of solar cell

    Get PDF
    In this work, four stable dithieno[3,2-b:2′,3'-d]thiophene-based π-extended molecules were designed and synthesized via a Pd-catalysed Sonogashira coupling reaction. The structures of these symmetrical compounds, including dithieno[3,2-b:2′,3'-d]thiophene (DTT) as the π-center and various donor (D) groups, were determined on the basis of NMR spectral data, elemental analysis, and X-ray crystallography. The photo-physical properties of the DTT-based derivatives 2 were fully investigated in both solution and solid state. The notable optical features of their solid-state powders showed significant red-shift in comparison with the luminescence of their dilute dichloromethane solutions. These results combined with the theoretical calculations indicate that they are promising candidates for the several applications in electronic and optoelectronic devices, as well as organic dyes for solar cells

    Comparison of Prenatal Health Management State and Educational Needs for Pregnant Women with Advanced Maternal Age and Under the Age of 35

    Get PDF
    PURPOSE: This study was done to confirm prenatal health management and educational needs for pregnant women with advanced maternal age (AMA) and pregnant women under 35 years of age. METHODS: This study was a descriptive research in which self-report questionnaires were used. Participants were 279 pregnant women (83 AMA and 196 less than 35). RESULTS: Only 32.5% of AMA women had received prenatal education and 51.8% reported wanting internet education. AMA women, compared to the under 35 women, had higher levels of self-awareness of health problems and possibility of health problems but lower levels of alcohol experience before pregnancy. For prenatal health management, scores were low for prenatal exercise, prenatal education and nutrition. For prenatal health management education, AMA women reported high levels of need for education on health problems. CONCLUSION: The results indicate that prenatal health management education must be given considering differences in age-related requirements by emphasizing health care and obstetric complications during pregnancy for AMA womenand anemia and information on substance use during pregnancy for women under 35. Reliable internet-based education programs need to be developed using available information and communication technology for the increasing number of employed pregnant women

    Instanton interpolating current for σ\sigma--tetraquark

    Full text link
    We perform a QCD sum rule analysis for the light scalar meson σ\sigma (f0(600)f_0(600)) with a tetraquark current related to the instanton picture for QCD vacuum. We demonstrate that instanton current, including equal weights of scalar and pseudoscalar diquark-antidiquarks, leads to a strong cancelation between the contributions of high dimension operators in the operator product expansion (OPE). Furthermore, in the case of this current direct instanton contributions do not spoil the sum rules. Our calculation, obtained from the OPE up to dimension 10 operators, gives the mass of σ\sigma--meson around 780MeV.Comment: 11 pages, 7 figures, final version to be appeared in Phys. Lett.

    Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinoids are lipophilic isoprenoids composed of a cyclic group and a linear chain with a hydrophilic end group. These compounds include retinol, retinal, retinoic acid, retinyl esters, and various derivatives of these structures. Retinoids are used as cosmetic agents and effective pharmaceuticals for skin diseases. Retinal, an immediate precursor of retinoids, is derived by β-carotene 15,15'-mono(di)oxygenase (BCM(D)O) from β-carotene, which is synthesized from the isoprenoid building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Retinoids are chemically unstable and biologically degraded via retinoic acid. Although extensive studies have been performed on the microbial production of carotenoids, retinoid production using microbial metabolic engineering has not been reported. Here, we report retinoid production using engineered <it>Escherichia coli </it>that express exogenous BCM(D)O and the mevalonate (MVA) pathway for the building blocks synthesis in combination with a two-phase culture system using a dodecane overlay.</p> <p>Results</p> <p>Among the BCM(D)O tested in <it>E. coli</it>, the synthetic retinoid synthesis protein (SR), based on bacteriorhodopsin-related protein-like homolog (Blh) of the uncultured marine bacteria 66A03, showed the highest β-carotene cleavage activity with no residual intracellular β-carotene. By introducing the exogenous MVA pathway, 8.7 mg/L of retinal was produced, which is 4-fold higher production than that of augmenting the MEP pathway (<it>dxs </it>overexpression). There was a large gap between retinal production and β-carotene consumption using the exogenous MVA pathway; therefore, the retinal derivatives were analyzed. The derivatives, except for retinoic acid, that formed were identified, and the levels of retinal, retinol, and retinyl acetate were measured. Amounts as high as 95 mg/L retinoids were obtained from engineered <it>E. coli </it>DH5α harboring the synthetic <it>SR </it>gene and the exogenous MVA pathway in addition to <it>dxs </it>overexpression, which were cultured at 29°C for 72 hours with 2YT medium containing 2.0% (w/v) glycerol as the main carbon source. However, a significant level of intracellular degradation of the retinoids was also observed in the culture. To prevent degradation of the intracellular retinoids through <it>in situ </it>extraction from the cells, a two-phase culture system with dodecane was used. The highest level of retinoid production (136 mg/L) was obtained after 72 hours with 5 mL of dodecane overlaid on a 5 mL culture.</p> <p>Conclusions</p> <p>In this study, we successfully produced 136 mg/L retinoids, which were composed of 67 mg/L retinal, 54 mg/L retinol, and 15 mg/L retinyl acetate, using a two-phase culture system with dodecane, which produced 68-fold more retinoids than the initial level of production (2.2 mg/L). Our results demonstrate the potential use of <it>E. coli </it>as a promising microbial cell factory for retinoid production.</p

    D-π-D chromophores based on dithieno[3,2-b:2',3'-d]thiophene (DTT): Potential application in the fabrication of solar cell

    Get PDF
    © 2016 Elsevier LtdIn this work, four stable dithieno[3,2-b:2',3'-d]thiophene-based π-extended molecules were designed and synthesized via a Pd-catalysed Sonogashira coupling reaction. The structures of these symmetrical compounds, including dithieno[3,2-b:2',3'-d]thiophene (DTT) as the π-center and various donor (D) groups, were determined on the basis of NMR spectral data, elemental analysis, and X-ray crystallography. The photo-physical properties of the DTT-based derivatives 2 were fully investigated in both solution and the solid state. The notable optical features of their solid-state powders showed significant red-shifts in comparison with the luminescence of their dilute dichloromethane solutions. These results combined with the theoretical calculations indicate that they are promising candidates for several applications in electronic and optoelectronic devices, as well as organic dyes for solar cells

    Sequencing and characterization of Varicella-Zoster virus vaccine strain SuduVax

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Varicella-zoster virus (VZV) causes chickenpox in children and shingles in older people. Currently, live attenuated vaccines based on the Oka strain are available worldwide. In Korea, an attenuated VZV vaccine has been developed from a Korean isolate and has been commercially available since 1994. Despite this long history of use, the mechanism for the attenuation of the vaccine strain is still elusive. We attempted to understand the molecular basis of attenuation mechanism by full genome sequencing and comparative genomic analyses of the Korean vaccine strain SuduVax.</p> <p>Results</p> <p>SuduVax was found to contain a genome that was 124,759 bp and possessed 74 open reading frames (ORFs). SuduVax was genetically most close to Oka strains and these Korean-Japanese strains formed a strong clade in phylogenetic trees. SuduVax, similar to the Oka vaccine strains, underwent T- > C substitution at the stop codon of ORF0, resulting in a read-through mutation to code for an extended form of ORF0 protein. SuduVax also shared certain deletion and insertion mutations in ORFs 17, 29, 56 and 60 with Oka vaccine strains and some clinical strains.</p> <p>Conclusions</p> <p>The Korean VZV vaccine strain SuduVax is genetically similar to the Oka vaccine strains. Further comparative genomic and bioinformatics analyses will help to elucidate the molecular basis of the attenuation of the VZV vaccine strains.</p
    corecore