2 research outputs found

    Unsaturated Drift Velocity of Monolayer Graphene

    No full text
    We observe that carriers in graphene can be accelerated to the Fermi velocity without heating the lattice. At large Fermi energy |<i>E</i><sub>F</sub>| > 110 meV, electrons excited by a high-power terahertz pulse <i>E</i><sub>THz</sub> relax by emitting optical phonons, resulting in heating of the graphene lattice and optical-phonon generation. This is owing to enhanced electron–phonon scattering at large Fermi energy, at which the large phase space is available for hot electrons. The emitted optical phonons cause carrier scattering, reducing the drift velocity or carrier mobility. However, for |<i>E</i><sub>F</sub>| ≤ 110 meV, electron–phonon scattering rate is suppressed owing to the diminishing density of states near the Dirac point. Therefore, <i>E</i><sub>THz</sub> continues to accelerate carriers without them losing energy to optical phonons, allowing the carriers to travel at the Fermi velocity. The exotic carrier dynamics does not result from the massless nature, but the electron–optical-phonon scattering rate depends on Fermi level in the graphene. Our observations provide insight into the application of graphene for high-speed electronics without degrading carrier mobility

    Transient Carrier Cooling Enhanced by Grain Boundaries in Graphene Monolayer

    No full text
    Using a high terahertz (THz) electric field (<i>E</i><sub>THz</sub>), the carrier scattering in graphene was studied with an electric field of up to 282 kV/cm. When the grain size of graphene monolayers varies from small (5 μm) and medium (70 μm) to large grains (500 μm), the dominant carrier scattering source in large- and small-grained graphene differs at high THz field, i.e., there is optical phonon scattering for large grains and defect scattering for small grains. Although the electron–optical phonon coupling strength is the same for all grain sizes in our study, the enhanced optical phonon scattering in the high THz field from the large-grained graphene is caused by a higher optical phonon temperature, originating from the slow relaxation of accelerated electrons. Unlike the large-grained graphene, lower electron and optical phonon temperatures are found in the small-grained graphene monolayer, resulting from the effective carrier cooling through the defects, called supercollisions. Our results indicate that the carrier mobility in the high-crystalline graphene is easily vulnerable to scattering by the optical phonons. Thus, controlling the population of defect sites, as a means for carrier cooling, can enhance the carrier mobility at high electric fields in graphene electronics by suppressing the heating of optical phonons
    corecore