111 research outputs found

    What's the Worst Thing You Can Do to Shakespeare?

    Get PDF
    Citation: Hedrick, D. (2016). What's the Worst Thing You Can Do to Shakespeare? Renaissance Quarterly, 69(3), 1196-1197. Retrieved from https://doi.org/10.1086/689159To judge by its cover, this book is a mess — a deliberately instructive one. Its visuals combine an eroded font as well as an ink-splattered Shakespeare signature and an Etch A Sketch incongruously displaying Shakespeare’s Chandos portrait. The media mix embodies the authors’ provocative approach: Shakespeare as “multimedia archive” — Latour’s “iconoclash” of time-spanning formats in material “substrates” of texts, media, and human “wetware.” The Folio’s “media launch” by Shakespeare’s friends cannily initiated a fetish community around the “strategically imperfect” object’s gaps, urging us to read “him” — book and man composite “bio-bibilion” — “again and again.” The “worst” becomes not reading him, the condition defining the “unreadable” spaces made visible in adaptations. The study deconstructs dazzlingly, drawing readers into the brilliant, imitative high spirits of the authors’ animated, collaborative anonymity; their playful preface even occludes which coauthor speaks. Chapter transitions imitate radio or telephone: Hamlet’s ends with a “call coming through” from the next chapter’s Juliet (45). Their introduction highlights foundational scholarship for their project: McCleod on unediting; de Grazia undoing Hamlet’s post-romantic rebranding; Middleton’s authorship now altering Shakespeare’s “gravitational field”; Stallybrass’s and Lesser’s recovery of reading for sententiae, so that Hamlet was “never read”; Eagleton’s apocalyptic “worst” — that Shakespeare must be destroyed before becoming readable again

    Locating the Vanishing Point: Style in Literature, Architecture and Beyond

    Get PDF
    An Anecdote. As it so happened, I was traveling on a vacation with my family, and stopped for lunch at one of the identifiable feature of the modern highway, a Nickerson Farms restaurant

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. I. Flight Kinematics

    Get PDF
    Hummingbirds are nature’s masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the ‘helicopter model’ that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. II. Aerodynamic Force Production, Flight Control and Performance Limitations

    Get PDF
    The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres

    An Economic Impact Analysis of the Proposed Yakima/Klickitat Fishery Enhancement Project; Preliminary Design Report, Appendix D.

    Get PDF
    The objective of this study is to estimate the economic impact of the proposed Yakima/Klickitat Production Project on the local economies of the Yakima and Klickitat subbasins. The project, when operating at planned maximum production, will augment the total number of salmon and steelhead returning to the subbasins by 77,600 and will increase the sustainable terminal harvest by 55,160. These estimates do not include fish harvested in the ocean or in the mainstem Columbia. In addition to evaluating the impacts of the construction, operations and maintenance, experimentation and monitoring, and harvest activities described in the Draft Environmental Assessment (Bonneville Power Administration, 1989), our analysis also evaluates some passageway improvements and Phase II screening of irrigation structures. Both of these augmentations are required In order for the project to reach maximum planned harvest levels. The study area includes the Yakima Subbasin economy (Yakima and Kittitas counties), the mid-Columbia Basin/Klickitat Subbasin economies (Klickitat, Hood River, and Wasco counties), and the Tri-Cities economy (Benton and Franklin counties). The study period extends from 1990 through 2015: from preconstruction planning activities through reaching maximum production

    An Economic Impact Analysis of the Proposed Yakima/Klickitat Fishery Enhancement Project; Preliminary Design Report, Appendix D.

    Get PDF
    The objective of this study is to estimate the economic impact of the proposed Yakima/Klickitat Production Project on the local economies of the Yakima and Klickitat subbasins. The project, when operating at planned maximum production, will augment the total number of salmon and steelhead returning to the subbasins by 77,600 and will increase the sustainable terminal harvest by 55,160. These estimates do not include fish harvested in the ocean or in the mainstem Columbia. In addition to evaluating the impacts of the construction, operations and maintenance, experimentation and monitoring, and harvest activities described in the Draft Environmental Assessment (Bonneville Power Administration, 1989), our analysis also evaluates some passageway improvements and Phase II screening of irrigation structures. Both of these augmentations are required In order for the project to reach maximum planned harvest levels. The study area includes the Yakima Subbasin economy (Yakima and Kittitas counties), the mid-Columbia Basin/Klickitat Subbasin economies (Klickitat, Hood River, and Wasco counties), and the Tri-Cities economy (Benton and Franklin counties). The study period extends from 1990 through 2015: from preconstruction planning activities through reaching maximum production
    • 

    corecore