62 research outputs found

    Endogenous but not sensory-driven activity controls migration, morphogenesis and survival of adult-born juxtaglomerular neurons in the mouse olfactory bulb.

    Get PDF
    The development and survival of adult-born neurons are believed to be driven by sensory signaling. Here, in vivo analyses of motility, morphology and Ca2+ signaling, as well as transcriptome analyses of adult-born juxtaglomerular cells with reduced endogenous excitability (via cell-specific overexpression of either Kv1.2 or Kir2.1 K+ channels), revealed a pronounced impairment of migration, morphogenesis, survival, and functional integration of these cells into the mouse olfactory bulb, accompanied by a reduction in cytosolic Ca2+ fluctuations, phosphorylation of CREB and pCREB-mediated gene expression. Moreover, K+ channel overexpression strongly downregulated genes involved in neuronal migration, differentiation, and morphogenesis and upregulated apoptosis-related genes, thus locking adult-born cells in an immature and vulnerable state. Surprisingly, cells deprived of sensory-driven activity developed normally. Together, the data reveal signaling pathways connecting the endogenous intermittent neuronal activity/Ca2+ fluctuations as well as enhanced Kv1.2/Kir2.1 K+ channel function to migration, maturation, and survival of adult-born neurons

    Loss or gain of function? Effects of ion channel mutations on neuronal firing depend on the neuron type

    Get PDF
    IntroductionClinically relevant mutations to voltage-gated ion channels, called channelopathies, alter ion channel function, properties of ionic currents, and neuronal firing. The effects of ion channel mutations are routinely assessed and characterized as loss of function (LOF) or gain of function (GOF) at the level of ionic currents. However, emerging personalized medicine approaches based on LOF/GOF characterization have limited therapeutic success. Potential reasons are among others that the translation from this binary characterization to neuronal firing is currently not well-understood—especially when considering different neuronal cell types. In this study, we investigate the impact of neuronal cell type on the firing outcome of ion channel mutations.MethodsTo this end, we simulated a diverse collection of single-compartment, conductance-based neuron models that differed in their composition of ionic currents. We systematically analyzed the effects of changes in ion current properties on firing in different neuronal types. Additionally, we simulated the effects of known mutations in KCNA1 gene encoding the KV1.1 potassium channel subtype associated with episodic ataxia type 1 (EA1).ResultsThese simulations revealed that the outcome of a given change in ion channel properties on neuronal excitability depends on neuron type, i.e., the properties and expression levels of the unaffected ionic currents.DiscussionConsequently, neuron-type specific effects are vital to a full understanding of the effects of channelopathies on neuronal excitability and are an important step toward improving the efficacy and precision of personalized medicine approaches

    A Recurrent Mutation in KCNA2 as a Novel Cause of Hereditary Spastic Paraplegia and Ataxia

    Get PDF
    The hereditary spastic paraplegias (HSPs) are heterogeneous neurodegenerative disorders with over 50 known causative genes. We identified a recurrent mutation in KCNA2 (c.881G>A, p.R294H), encoding the voltage-gated K+-channel, K(V)1.2, in two unrelated families with HSP, intellectual disability (ID), and ataxia. Follow-up analysis of >2,000 patients with various neurological phenotypes identified a de novo p.R294H mutation in a proband with ataxia and ID. Two-electrode voltage-clamp recordings of Xenopus laevis oocytes expressing mutant KV1.2 channels showed loss of function with a dominant-negative effect. Our findings highlight the phenotypic spectrum of a recurrent KCNA2 mutation, implicating ion channel dysfunction as a novel HSP disease mechanism.Peer reviewe

    P2RX7 gene variants associate with altered inflammasome assembly and reduced pyroptosis in chronic nonbacterial osteomyelitis (CNO).

    Get PDF
    Chronic nonbacterial osteomyelitis (CNO), an autoinflammatory bone disease primarily affecting children, can cause pain, hyperostosis and fractures, affecting quality-of-life and psychomotor development. This study investigated CNO-associated variants in P2RX7, encoding for the ATP-dependent trans-membrane K+ channel P2X7, and their effects on NLRP3 inflammasome assembly. Whole exome sequencing in two related transgenerational CNO patients, and target sequencing of P2RX7 in a large CNO cohort (N = 190) were conducted. Results were compared with publicly available datasets and regional controls (N = 1873). Findings were integrated with demographic and clinical data. Patient-derived monocytes and genetically modified THP-1 cells were used to investigate potassium flux, inflammasome assembly, pyroptosis, and cytokine release. Rare presumably damaging P2RX7 variants were identified in two related CNO patients. Targeted P2RX7 sequencing identified 62 CNO patients with rare variants (32.4%), 11 of which (5.8%) carried presumably damaging variants (MAF 20). This compared to 83 of 1873 controls (4.4%), 36 with rare and presumably damaging variants (1.9%). Across the CNO cohort, rare variants unique to one (Median: 42 versus 3.7) or more (≤11 patients) participants were over-represented when compared to 190 randomly selected controls. Patients with rare damaging variants more frequently experienced gastrointestinal symptoms and lymphadenopathy while having less spinal, joint and skin involvement (psoriasis). Monocyte-derived macrophages from patients, and genetically modified THP-1-derived macrophages reconstituted with CNO-associated P2RX7 variants exhibited altered potassium flux, inflammasome assembly, IL-1β and IL-18 release, and pyroptosis. Damaging P2RX7 variants occur in a small subset of CNO patients, and rare P2RX7 variants may represent a CNO risk factor. Observations argue for inflammasome inhibition and/or cytokine blockade and may allow future patient stratification and individualized care

    Charakterisierung einer vom Gehirn absteigenden Bahn: Aktivierung und Zusammenspiel von höheren neuronalen Zentren, Projektionsneuronen und zentralen Mustergeneratoren im stomatogastrischen Nervensystem des Taschenkrebses

    No full text
    The nervous system receives and processes sensory information from the environment and can thus respond to changes with the appropriate behaviour. How the nervous system selects the adequate motor pattern is not well understood. For the investigation of nervous system function and motor pattern selection in particular, one typically uses behaviours which comprise rhythmic components (walking, breathing). Such rhythmic movements are often driven by central pattern generators (CPGs). The movements of the stomach of decapod crustaceans, e.g., are generated by CPGs in the stomatogastric nervous system (STNS). They generate the oesophageal rhythm (swallowing), the gastric mill rhythm (GMR, chewing) and the pyloric rhythm (filtering). These rhythms are modulated by several projection neurons and they are affected by multiple sensory pathways. How higher neuronal centres select motor patterns out of these multifunctional networks and thus elicit appropriate behaviours is unknown. In my thesis I characterised the projections of two descending brain pathways, the inferior ventricular neurons (IV neurons), in the crab, Cancer pagurus. In addition, their activation via sensory inputs as well as their effects on the CPGs located in the stomatogastric ganglion were analysed. In the intact animal chemosensory stimuli elicited rhythmic IV neuron bursts. Rhythmic IV neuron stimulation in vitro elicited GMR or entrained them, if they were active. In addition, IV neuron stimulation excited the oesophageal motor neuron and inhibited several pyloric neurons. The CPGs in the STNS were mostly affected indirectly via descending projection neurons located in the commissural ganglia (CoGs). I thus characterised the interactions between the IV neurons and four CoG projection neurons and determined the connections between them. My findings support the hypothesis that the processing of different sensory information and the selection of motor patterns occur on the level of higher-order centres

    Epileptogenesis and consequences for treatment

    No full text
    • …
    corecore