416 research outputs found
On the minimum orbital intersection distance computation: a new effective method
The computation of the Minimum Orbital Intersection Distance (MOID) is an
old, but increasingly relevant problem. Fast and precise methods for MOID
computation are needed to select potentially hazardous asteroids from a large
catalogue. The same applies to debris with respect to spacecraft. An iterative
method that strictly meets these two premises is presented.Comment: 13 pages, 10 figures, article accepted for publication in MNRA
Exotic Kondo-hole band resistivity and magnetoresistance of CeLaOsSb alloys
Electrical resistivity measurements of non-magnetic single-crystalline
CeLaOsSb alloys, and 0.1, are reported for
temperatures down to 20 mK and magnetic fields up to 18 T. At the lowest
temperatures, the resistivity of CeLaOsSb has a
Fermi-liquid-like temperature variation , but with negative
in small fields. The resistivity has an unusually strong magnetic field
dependence for a paramagnetic metal. The 20 mK resistivity increases by 75%
between H=0 and 4 T and then decreases by 65% between 4 T and 18 T. Similarly,
the coefficient increases with the field from -77 to 29cmK between H=0 and 7 T and then decreases to 18cmK for 18 T. This nontrivial temperature and field variation
is attributed to the existence of a very narrow Kondo-hole band in the
hybridization gap, which pins the Fermi energy. Due to disorder the Kondo-hole
band has localized states close to the band edges. The resistivity for
has a qualitatively similar behavior to that of , but with a larger
Kondo-hole band
Anomalous Pressure Dependence of Kadowaki-Woods ratio and Crystal Field Effects in Mixed-valence YbInCu4
The mixed-valence (MV) compound YbInCu4 was investigated by electrical
resistivity and ac specific heat at low temperatures and high pressures. At
atmospheric pressure, its Kadowaki-Woods (KW) ratio, A/\gamma ^2, is 16 times
smaller than the universal value R_{KW}(=1.0 x 10^-5 \mu \Omega cm mol^2 K^2
mJ^-2), but sharply increases to 16.5R_{KW} at 27 kbar. The pressure-induced
change in the KW ratio and deviation from R_{KW} are analyzed in terms of the
change in f-orbital degeneracy N and carrier density n. This analysis is
further supported by a dramatic change in residual resistivity \rho_0 near 25
kbar, where \rho_0 jumps by a factor of 7.Comment: 4pages, 3figure
Pressure-induced changes in the magnetic and valence state of EuFe2As2
We present the results of electrical resistivity, ac specific heat, magnetic
susceptibility, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular
dichroism (XMCD) of the ternary iron arsenide EuFe2As2 single crystal under
pressure. Applying pressure leads to a continuous suppression of the
antiferromagnetism associated with Fe moments and the antiferromagnetic
transition temperature becomes zero in the vicinity of a critical pressure Pc
~2.5-2.7 GPa. Pressure-induced re-entrant superconductivity, which is highly
sensitive to the homogeneity of the pressure, only appears in the narrow
pressure region in the vicinity of Pc due to the competition between
superconductivity and the antiferromagnetic ordering of Eu2+ moments. The
antiferromagnetic state of Eu2+ moments changes to the ferromagnetic state
above 6 GPa. We also found that the ferromagnetic order is suppressed with
further increasing pressure, which is connected with a valence change of Eu
ions.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.
High pressure effects on the electrical resistivity behavior of the Kondo lattice, YbPd2Si2
We report the influence of external pressure (P= up to 8 GPa) on the
temperature dependence of electrical resistivity of a Yb-based Kondo lattice,
YbPd2Si2, which does not undergo magnetic ordering under ambient pressure
condition. There are qualitative changes in the temperature dependence of
electrical resistivity due to the application of external pressure. While the
resistivity is found to vary quadratically below 15 K (down to 45 mK)
characteristic of Fermi-liquids, a drop is observed below 0.5 K for P= 1 GPa.
Since the resistance values do not attain zero, we are attempted to attribute
this drop to magnetic ordering, rather than to superconductivity. The
temperature at which this fall occurs goes through a peak as a function of P (8
K for2 GPa and about 5 K at higher pressures). mimicking Doniach's magnetic
phase diagram. We conclude that this is one of the few Yb-based stoichiometric
materials, in which one can travers from valence fluctuation to magnetic
ordering by the application of external pressure.Comment: 3 figure
Electrical resistivity and tunneling anomalies in CeCuAs2
The compound CeCuAs2 is found to exhibit negative temperature (T) coefficient
of electrical resistivity (rho) under ambient pressure conditions in the entire
T-range of investigation (45 mK to 300 K), even in the presence of high
magnetic fields. Preliminary tunneling spectroscopic measurements indicate the
existence of a psuedo-gap at least at low temperatures, thereby implying that
this compound could be classified as a Kondo semi-conductor, though rho(T)
interestingly is not found to be of an activated type.Comment: To appear in the proceedings of SCES200
Assessment of Narrow-Body Transport Airplane Evacuation by Numerical Simulation
This paper presents the results obtained with a new agent-based computer model that can simulate the evacuation
of narrow-body transport airplanes in the conditions prescribed by the airworthiness regulations for certification.
The model, described in detail in a former paper, has been verified with real data of narrow-body certification
demonstrations. Numerical simulations of around 20 narrow-body aircraft, representative of current designs in
various market segments, show the capabilities of the model and provide relevant information on the relationship
between cabin features and emergency evacuation. The longitudinal location of emergency exits seems to be even
more important than their size or the overall margin with respect to the prescribed number and type of exits indicated
by the airworthiness requirement
Quasiparticle Density of States of Clean and Dirty s-Wave Superconductors in the Vortex State
The quasiparticle density of states (DOS) in the vortex state has been probed
by specific heat measurements under magnetic fields (H) for clean and dirty
s-wave superconductors, Y(Ni1-xPtx)2B2C and Nb1-xTaxSe2. We find that the
quasiparticle DOS per vortex is appreciably H-dependent in the clean-limit
superconductors, while it is H-independent in the dirty superconductors as
expected from a conventional rigid normal electron core picture. We discuss
possible origins for our observations in terms of the shrinking of the vortex
core radius with increasing H.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jpn. Vol. 68 No.
Superconducting gap and pair breaking in CeRu2 studied by point contacts
The superconducting gap in a CeRu single crystal is investigated by
point contacts. BCS-like behavior of the gap in the temperature range
below TT, where T is the critical temperature, is
established, indicating the presence of a gapless superconductivity region
(between T and T). The pair-breaking effect of paramagnetic
impurities, supposedly Ce ions, is taken into consideration using the
Scalski-Betbeder-Matibet-Weiss approach based on Abrikosov-Gorkov theory. It
allows us to recalculate the superconducting order parameter (in the presence of paramagnetic impurities) and the gap (in
the pure case) for the single crystal and for the previously studied
polycrystalline CeRu. The value 2(0)2 meV, with
2(0)kT3.75, is found in both cases,
indicating that CeRu is a ``moderate'' strong-coupling superconductor.Comment: 4 pages incl. 3 figs., publ. in Fiz. Nizk. Temp.
(http://fnte.ilt.kharkov.ua/list.html
- …