860 research outputs found

    Effect of CSA membership on fruit and vegetable intake, The

    Get PDF
    2011 Summer.Includes bibliographical references.Objective: Increased fruit and vegetable intake has been associated with decreased BMI and disease rates (Ford & Mokdad, 2001; Lin & Morrison, 2002; Liu, 2000; Newby, et al., 2003; Riboli & Norat, 2003). Multiple barriers inhibit fruit and vegetable consumption, including the availability in the U.S. (Pollard, et al., 2002). Currently, there are many forms of alternative food networks (AFNs) such as farmers markets, community gardens and community supported agriculture (CSAs) providing local, seasonal produce to consumers, attempting to address availability and provide other outlets for fresh produce. This study examines the influences that CSA membership may have on fruit and vegetable intake. Methods and Materials: Sixty-one participants were recruited from an average-sized CSA (2000 members; GFF), and non-CSA members (NON- as a control group). Three, 24-hour dietary recalls were collected by phone to estimate the produce components of each participant's diet over 6 months during the 2010 CSA season. Each diet was quantified based on the amount and variety of fruit, vegetables, total fruit and vegetables, and leafy greens. Results: The groups were very similar in fruit and vegetable consumption at baseline. At the peak of CSA season (T2), GFF participants were consuming more vegetables (2.96 [0.26]) and more total fruits and vegetables (4.45 [0.40]) than NON participants (2.16 [0.29], p<0.1; 3.38 [0.45] p<0.1, respectively). Both CSU and GFF participants had an increased variety of vegetables over NON participants (p<0.01 and p<0.001, respectively) and participants from both CSAs had higher total variety (p<0.01) at Time 2. Conclusions/Implications: From this study, variety was the major dietary difference in produce intake between both CSA groups and the control group. Demographic characteristics of participants were similar, indicating that the observed changes were likely a true relationship. A diet with increased variety of fruits and vegetables has been associated with increased health benefits, having the potential to reduce disease rates (Wirt & Collins, 2009). More studies need to be conducted examining larger study populations, the potential effect CSAs may have on low-income populations, and other forms of alternative food networks, such as farmers markets or community gardens

    Filamentary Accretion Flows in the Embedded Serpens South Protocluster

    Full text link
    One puzzle in understanding how stars form in clusters is the source of mass -- is all of the mass in place before the first stars are born, or is there an extended period when the cluster accretes material which can continuously fuel the star formation process? We use a multi-line spectral survey of the southern filament associated with the Serpens South embedded cluster-forming region in order to determine if mass is accreting from the filament onto the cluster, and whether the accretion rate is significant. Our analysis suggests that material is flowing along the filament's long axis at a rate of ~30Msol/Myr (inferred from the N2H+ velocity gradient along the filament), and radially contracting onto the filament at ~130Msol/Myr (inferred from HNC self-absorption). These accretion rates are sufficient to supply mass to the central cluster at a similar rate to the current star formation rate in the cluster. Filamentary accretion flows may therefore be very important in the ongoing evolution of this cluster.Comment: 19 pages, 8 figures, 2 tables; accepted for publication in Ap

    Grid Diagrams for Lens Spaces and Combinatorial Knot Floer Homology

    Full text link
    Similar to knots in S^3, any knot in a lens space has a grid diagram from which one can combinatorially compute all of its knot Floer homology invariants. We give an explicit description of the generators, differentials, and rational Maslov and Alexander gradings in terms of combinatorial data on the grid diagram. Motivated by existing results for the Floer homology of knots in S^3 and the similarity of the combinatorics presented here, we conjecture that a certain family of knots is characterized by their Floer homology. Coupled with work of the third author, an affirmative answer to this would prove the Berge conjecture, which catalogs the knots in S^3 admitting lens space surgeries.Comment: 27 pages, 8 figures; Expositional improvements, corrected normalization of A grading in proof of Lemma 4.1

    Randomization in substance abuse clinical trials

    Get PDF
    BACKGROUND: A well designed randomized clinical trial rates as the highest level of evidence for a particular intervention's efficacy. Randomization, a fundamental feature of clinical trials design, is a process invoking the use of probability to assign treatment interventions to patients. In general, randomization techniques pursue the goal of providing objectivity to the assignment of treatments, while at the same time balancing for treatment assignment totals and covariate distributions. Numerous randomization techniques, each with varying properties of randomness and balance, are suggested in the statistical literature. This paper reviews common randomization techniques often used in substance abuse research and an application from a National Institute on Drug Abuse (NIDA)-funded clinical trial in substance abuse is used to illustrate several choices an investigator faces when designing a clinical trial. RESULTS: Comparisons and contrasts of randomization schemes are provided with respect to deterministic and balancing properties. Specifically, Monte Carlo simulation is used to explore the balancing nature of randomization techniques for moderately sized clinical trials. Results demonstrate large treatment imbalance for complete randomization with less imbalance for the urn or adaptive scheme. The urn and adaptive randomization methods display smaller treatment imbalance as demonstrated by the low variability of treatment allocation imbalance. For all randomization schemes, covariate imbalance between treatment arms was small with little variation between adaptive schemes, stratified schemes and unstratified schemes given that sample sizes were moderate to large. CONCLUSION: We develop this paper with the goal of reminding substance abuse researchers of the broad array of randomization options available for clinical trial designs. There may be too quick a tendency for substance abuse researchers to implement the fashionable urn randomization schemes and other highly adaptive designs. In many instances, simple or blocked randomization with stratification on a major covariate or two will accomplish the same objectives as an urn or adaptive design, and it can do so with more simply implemented schedules and without the dangers of overmatching. Furthermore, the proper analysis, fully accounting for the stratified design, can be conducted

    Star Formation in the Northern Cloud Complex of NGC 2264

    Full text link
    We have made continuum and spectral line observations of several outflow sources in the Mon OB1 dark cloud (NGC 2264) using the Heinrich Hertz Telescope (HHT) and ARO 12m millimeter-wave telescope. This study explores the kinematics and outflow energetics of the young stellar systems observed and assesses the impact star formation is having on the surrounding cloud environment. Our data set incorporates 12CO(3-2), 13CO(3-2), and 12CO(1-0) observations of outflows associated with the sources IRAS 06382+1017 and IRAS 06381+1039, known as IRAS 25 and 27, respectively, in the northern cloud complex. Complementary 870 micron continuum maps were made with the HHT 19 channel bolometer array. Our results indicate that there is a weak (approximately less than 0.5%) coupling between outflow kinetic energy and turbulent energy of the cloud. An analysis of the energy balance in the IRAS 25 and 27 cores suggests they are maintaining their dynamical integrity except where outflowing material directly interacts with the core, such as along the outflow axes.Comment: 28 pages including 6 figures, to be published in ApJ 01 July 2006, v645, 1 issu

    The zero-dimensional O(N) vector model as a benchmark for perturbation theory, the large-N expansion and the functional renormalization group

    Full text link
    We consider the zero-dimensional O(N) vector model as a simple example to calculate n-point correlation functions using perturbation theory, the large-N expansion, and the functional renormalization group (FRG). Comparing our findings with exact results, we show that perturbation theory breaks down for moderate interactions for all N, as one should expect. While the interaction-induced shift of the free energy and the self-energy are well described by the large-N expansion even for small N, this is not the case for higher-order correlation functions. However, using the FRG in its one-particle irreducible formalism, we see that very few running couplings suffice to get accurate results for arbitrary N in the strong coupling regime, outperforming the large-N expansion for small N. We further remark on how the derivative expansion, a well-known approximation strategy for the FRG, reduces to an exact method for the zero-dimensional O(N) vector model.Comment: 13 pages, 13 figure

    A finite-frequency functional RG approach to the single impurity Anderson model

    Full text link
    We use the Matsubara functional renormalization group (FRG) to describe electronic correlations within the single impurity Anderson model. In contrast to standard FRG calculations, we account for the frequency-dependence of the two-particle vertex in order to address finite-energy properties (e.g, spectral functions). By comparing with data obtained from the numerical renormalization group (NRG) framework, the FRG approximation is shown to work well for arbitrary parameters (particularly finite temperatures) provided that the electron-electron interaction U is not too large. We demonstrate that aspects of (large U) Kondo physics which are described well by a simpler frequency-independent truncation scheme are no longer captured by the 'higher-order' frequency-dependent approximation. In contrast, at small to intermediate U the results obtained by the more elaborate scheme agree better with NRG data. We suggest to parametrize the two-particle vertex not by three independent energy variables but by introducing three functions each of a single frequency. This considerably reduces the numerical effort to integrate the FRG flow equations.Comment: accepted by J. Phys.: Condensed Matte

    Modelo computacional para suporte à decisão em áreas irrigadas. Parte II. Testes e aplicação.

    Get PDF
    Apresentou-se, na Parte I desta pesquisa, o desenvolvimento de um modelo computacional denominado MCID, para suporte à tomada de decisão quanto ao planejamento e manejo de projetos de irrigação e/ou drenagem. Objetivou-se, na Parte II, testar e aplicar o MCID. No teste comparativo com o programa DRAINMOD, espaçamentos entre drenos, obtidos com o MCID, foram ligeiramente maiores ou idênticos. Os espaçamentos advindos com o MCID e o DRAINMOD foram consideravelmente maiores que os obtidos por meio de metodologias tradicionais de dimensionamento de sistemas de drenagem. A produtividade relativa total, YRT, obtida com o MCID foi, em geral, inferior à conseguida com o DRAINMOD, devido a diferenças de metodologia ao se estimar a produtividade da cultura em resposta ao déficit hídrico. Na comparação com o programa CRO-PWAT, obtiveram-se resultados muito próximos para (YRT) e evapotranspiração real. O modelo desenvolvido foi aplicado para as condições do Projeto Jaíba, MG, para culturas perenes e anuais cultivadas em diferentes épocas. Os resultados dos testes e aplicações indicaram a potencialidade do MClD como ferramenta de apoio à decisão em projetos de irrigação e/ou drenagem

    The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning.

    Get PDF
    Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning

    Computational modeling for irrigated agriculture planning. Part I: general description and linear programming.

    Get PDF
    Linear programming models are effective tools to support initial or periodic planning of agricultural enterprises, requiring, however, technical coefficients that can be determined using computer simulation models. This paper, presented in two parts, deals with the development, application and tests of a methodology and of a computational modeling tool to support planning of irrigated agriculture activities. Part I aimed at the development and application, including sensitivity analysis, of a multiyear linear programming model to optimize the financial return and water use, at farm level for Jaíba irrigation scheme, Minas Gerais State, Brazil, using data on crop irrigation requirement and yield, obtained from previous simulation with MCID model. The linear programming model outputted a crop pattern to which a maximum total net present value of R372,723.00forthefouryearsperiod,wasobtained.Constraintsonmonthlywateravailability,labor,landandproductionwerecriticalintheoptimalsolution.Inrelationtothewateruseoptimization,itwasverifiedthatanexpressivereductionsontheirrigationrequirementsmaybeachievedbysmallreductionsonthemaximumtotalnetpresentvalue.Modelosdeprogramac\ca~olinearsa~oferramentaseficazesdesuporteaoplanejamentoinicialouperioˊdicodeempreendimentosagrıˊcolas,requerendo,todavia,coeficientesteˊcnicosquepodemserobtidospormodeloscomputacionaisdesimulac\ca~o.Estetrabalho,divididoemduaspartes,abordaodesenvolvimento,aaplicac\ca~oeostestesdemetodologiaedamodelagemcomputacionaldeumaferramentadeauxıˊlioaoplanejamentodaexplorac\ca~oagrıˊcolairrigada.Teveseoobjetivodedesenvolvereaplicar,comanaˊlisedesensibilidade,ummodelodeprogramac\ca~olinearplurianualparaotimizac\ca~odoretomofinanceiroeusodaaˊgua,emniveldepropriedaderuralnoperıˊmetrodeirrigac\ca~odoJaıˊbaMG,utilizandodadosderequerimentodeirrigac\ca~oeprodutividadedeculturas,obtidoscomomodelodesimulac\ca~oMCIO.Omodelodeprogramac\ca~olinearindicouumpadra~odecultivoparaoqualseobteveomaˊximovalorpresenteliquidototal,deR 372,723.00 for the four years period, was obtained. Constraints on monthly water availability, labor, land and production were critical in the optimal solution. In relation to the water use optimization, it was verified that an expressive reductions on the irrigation requirements may be achieved by small reductions on the maximum total net present value. Modelos de programação linear são ferramentas eficazes de suporte ao planejamento inicial ou periódico de empreendimentos agrícolas, requerendo, todavia, coeficientes técnicos que podem ser obtidos por modelos computacionais de simulação. Este trabalho, dividido em duas partes, aborda o desenvolvimento, a aplicação e os testes de metodologia e da modelagem computacional de uma ferramenta de auxílio ao planejamento da exploração agrícola irrigada. Teve-se o objetivo de desenvolver e aplicar, com análise de sensibilidade, um modelo de programação linear plurianual para otimização do retomo financeiro e uso da água, em nivel de propriedade rural no perímetro de irrigação do Jaíba - MG, utilizando dados de requerimento de irrigação e produtividade de culturas, obtidos com o modelo de simulação MCIO. O modelo de programação linear indicou um padrão de cultivo para o qual se obteve o máximo valor presente liquido total, de R 372.723,00 para o período de quatro anos. Restrições quanto à disponibilidade mensal de água, mão-de-obra, terra e produção foram críticas na solução ótima. Em relação à otimização de uso da água, verificou-se que expressivas reduções no requerimento de irrigação podem ser obtidas com pequenas reduções no valor presente líquido total máximo
    corecore