18 research outputs found

    Auto-regulation of transcription and translation:oscillations, excitability and intermittency

    Get PDF
    Several members of the Hes/Her family, conserved targets of the Notch signalling pathway, encode transcriptional repressors that dimerise, bind DNA and self-repress. Such autoinhibition of transcription can yield homeostasis and, in the presence of delays that account for processes such as transcription, splicing and transport, oscillations. Whilst previous models of autoinhibition of transcription have tended to treat processes such as translation as being unregulated (and hence linear), here we develop and explore a mathematical model that considers autoinhibition of transcription together with nonlinear regulation of translation. It is demonstrated that such a model can yield, in the absence of delays, nonlinear dynamical behaviours such as excitability, homeostasis, oscillations and intermittency. These results indicate that regulation of translation as well as transcription allows for a much richer range of behaviours than is possible with autoregulation of transcription alone. A number of experiments are suggested that would that allow for the signature of autoregulation of translation as well as transcription to be experimentally detected in a Notch signalling system

    A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells.

    Get PDF
    The length of the poly(A) tail of an mRNA plays an important role in translational efficiency, mRNA stability and mRNA degradation. Regulated polyadenylation and deadenylation of specific mRNAs is involved in oogenesis, embryonic development, spermatogenesis, cell cycle progression and synaptic plasticity. Here we report a new technique to analyse the length of poly(A) tails and to separate a mixed population of mRNAs into fractions dependent on the length of their poly(A) tails. The method can be performed on crude lysate or total RNA, is fast, highly reproducible and minor changes in poly(A) tail length distribution are easily detected. We validated the method by analysing mRNAs known to undergo cytoplasmic polyadenylation during Xenopus laevis oocyte maturation. We then separated RNA from NIH3T3 cells into two fractions with short and long poly(A) tails and compared them by microarray analysis. In combination with the validation experiments, the results indicate that approximately 25% of the expressed genes have a poly(A) tail of less than 30 residues in a significant percentage of their transcripts

    eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR

    Get PDF
    Background: Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. Results: Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5′UTR of target mRNAs directly upstream of the AUG start codon. Conclusions: Our data support a model whereby purine motifs towards the 3′ end of the 5′UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding

    eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5′UTR

    Get PDF
    BackgroundRegulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood.ResultsHere, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5′UTR of target mRNAs directly upstream of the AUG start codon.ConclusionsOur data support a model whereby purine motifs towards the 3′ end of the 5′UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding.</p

    Control of eukaryotic protein synthesis by upstream open reading frames in the 5'-untranslated region of an mRNA.

    No full text
    Control of gene expression is achieved at various levels. Translational control becomes crucial in the absence of transcription, such as occurs in early developmental stages. One of the initiating events in translation is that the 40 S subunit of the ribosome binds the mRNA at the 5'-cap structure and scans the 5'-untranslated region (5'-UTR) for AUG initiation codons. AUG codons upstream of the main open reading frame can induce formation of a translation-competent ribosome that may translate and (i) terminate and re-initiate, (ii) terminate and leave the mRNA, resulting in down-regulation of translation of the main open reading frame, or (iii) synthesize an N-terminally extended protein. In the present review we discuss how upstream AUGs can control the expression of the main open reading frame, and a comparison is made with other elements in the 5'-UTR that control mRNA translation, such as hairpins and internal ribosome entry sites. Recent data indicate the flexibility of controlling translation initiation, and how the mode of ribosome entry on the mRNA as well as the elements in the 5'-UTR can accurately regulate the amount of protein synthesized from a specific mRNA

    Regulation of miRNA strand selection: follow the leader?

    No full text
    miRNA strand selection is the process that determines which of the two strands in a miRNA duplex becomes the active strand that is incorporated into the RISC (RNA-induced silencing complex) (named the guide strand, leading strand or miR) and which one gets degraded (the passenger strand or miR*). Thermodynamic features of the duplex appear to play an important role in this decision; the strand with the weakest binding at its 5′-end is more likely to become the guide strand. Other key characteristics of human miRNA guide strands are a U-bias at the 5′-end and an excess of purines, whereas the passenger strands have a C-bias at the 5′-end and an excess of pyrimidines. Several proteins are known to play a role in strand selection [Ago (Argonaute), DICER, TRBP (trans-activation response RNA-binding protein), PACT (protein activator of dsRNA-dependent protein kinase) and Xrn-1/2]; however, the mechanisms by which these proteins act are largely unknown. For several miRNAs the miR/miR* ratio varies dependent on cell type, developmental stage and in different disease states, suggesting that strand selection is a tightly controlled process. The present review discusses our current knowledge regarding the factors and processes involved in strand selection and the many questions that still remain

    DEAD-box helicase eIF4A2 inhibits CNOT7 deadenylation activity

    Get PDF
    The CCR4–NOT complex plays an important role in the translational repression and deadenylation of mRNAs. However, little is known about the specific roles of interacting factors. We demonstrate that the DEAD-box helicases eIF4A2 and DDX6 interact directly with the MA3 and MIF domains of CNOT1 and compete for binding. Furthermore, we now show that incorporation of eIF4A2 into the CCR4–NOT complex inhibits CNOT7 deadenylation activity in contrast to DDX6 which enhances CNOT7 activity. Polyadenylation tests (PAT) on endogenous mRNAs determined that eIF4A2 bound mRNAs have longer poly(A) tails than DDX6 bound mRNAs. Immunoprecipitation experiments show that eIF4A2 does not inhibit CNOT7 association with the CCR4–NOT complex but instead inhibits CNOT7 activity. We identified a CCR4–NOT interacting factor, TAB182, that modulates helicase recruitment into the CCR4–NOT complex, potentially affecting the outcome for the targeted mRNA. Together, these data show that the fate of an mRNA is dependent on the specific recruitment of either eIF4A2 or DDX6 to the CCR4–NOT complex which results in different pathways for translational repression and mRNA deadenylation
    corecore